Tìm x:
(3x + 4) ⋮ (x - 1)
(3x^2-16x) ÷ (-3x) +x(x-4) =-2 (5x^3+20x^2-25x) ÷25x=(x-1) (x+2) (3x+1) ^3=3x+1 x^2-4x+4=9(x-2) Tìm x
d: ta có: \(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=11\end{matrix}\right.\)
1. Tìm x, biết: a) /x-1/ + /x-4/=3x b) /x+1/ + /x+4/=3x c) /x(x-4)/ = x
Answer:
\(\left|x-1\right|+\left|x-4\right|=3x\)
Trường hợp 1: \(x>1\)
\(1-x+4-x=3x\)
\(\Rightarrow5-2x=3x\)
\(\Rightarrow5=5x\)
\(\Rightarrow x=1\) (Loại)
Trường hợp 2: \(1\le x\le4\)
\(x-1+4-x=3x\)
\(\Rightarrow3=3x\)
\(\Rightarrow x=1\) (Thoả mãn)
Trường hợp 3: \(x>4\)
\(x-1+x-4=3x\)
\(\Rightarrow2x+5=3x\)
\(\Rightarrow2x-3x=5\)
\(\Rightarrow x=-5\) (Loại)
\(\left|x+1\right|+\left|x+4\right|=3x\)
Có: \(\hept{\begin{cases}\left|x+1\right|\ge0\forall x\inℝ\\\left|x+4\right|\ge0\forall x\inℝ\end{cases}}\)
\(\Rightarrow3x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+1+x+4=3x\)
\(\Rightarrow2x+5=3x\)
\(\Rightarrow x=5\)
\(\left|x\left(x-4\right)\right|=x\)
\(\Rightarrow\orbr{\begin{cases}x\left(x-4\right)=x\\x\left(x-4\right)=-x\end{cases}}\Rightarrow\orbr{\begin{cases}x^2-4x=x\\x^2-4x=-x\end{cases}}\Rightarrow\orbr{\begin{cases}x^2-5x=0\\x^2-3x=0\end{cases}}\)
(Nếu ý này bạn trình bàn trong vở thì làm thành một ngoặc vuông to, trong đó chứa hai ngoặc vuông nhỏ nhé.)
Trường hợp 1: \(\orbr{\begin{cases}x=5\text{(Thoả mãn)}\\x=0\text{(Thoả mãn)}\end{cases}}\)
Trường hợp 2: \(\orbr{\begin{cases}x=3\text{(Thoả mãn)}\\x=0\text{(Loại)}\end{cases}}\)
Vậy \(x=5;x=0;x=3\)
tìm x
/x+1/+/x+4/=3x
/x-1/+/x-4/=3x
b)
Th1: x<1 <=> -x-1-x+4=3x <=> x=1(k tm đk)
Th2: 1<=x<=4 <=> x-1-x+4=3x <=> x=1 (tm đk)
Th3: x>4 <=> x-1+x-4=3x <=> x=5(tm đk)
Từ 3 trường hợp trên ta có x=1 và =5
Tìm x
b) (x-5) (x-4) - (x+1)(x-2)=7
c) (3x-4)(x-2)=3x(x-9)-3
d)(x-3)(x^2+3x+9)+x(5-x^2)=6x
e) (3x-5)(x+1)-(3x-1)(x+1)=x-4
b, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)
\(\Rightarrow x^2-9x+20-x^2+x+2=7\)
\(\Rightarrow-8x+22=7\)
\(\Rightarrow-8x=-15\)
\(\Rightarrow x=\frac{15}{8}\)
c, \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)
\(\Rightarrow3x^2-10x+8=3x^2-27x-3\)
\(\Rightarrow3x^2-10x-3x^2+27x=\left(-3\right)+\left(-8\right)\)
\(\Rightarrow17x=-11\)
\(\Rightarrow x=-\frac{11}{17}\)
d, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)
\(\Rightarrow x^3+3x^2+9x-3x^2-9x-27+5x-x^3=6x\)
\(\Rightarrow6x=-27\)
\(\Rightarrow x=-\frac{27}{6}\)
\(\Rightarrow x=-\frac{9}{2}\)
e, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Rightarrow3x^2-2x-5-3x^2-2x+1=x-4\)
\(\Rightarrow-4=x-4\)
\(\Rightarrow x=0\)
b) (x - 5)(x - 4) - (x + 1)(x - 2) = 7
<=> x2 - 9x + 20 - x2 + x + 2 - 7 = 0
<=> 8x - 15 = 0 <=> x = 15/8
c) (3x - 4)(x - 2) = 3x(x - 9) - 3
<=> 3x2 - 10x + 8 = 3x2 - 27x - 3
<=> 17x = -11 <=> x = -11/17
d) (x - 3)(x2 + 3x + 9) + x(5 - x2) = 6x
<=> x3 - 27 - x3 + 5x - 6x = 0
<=> x = -27
e) (3x - 5)(x + 1) - (3x - 1)(x + 1) = x - 4
<=> (x + 1)(3x - 5 - 3x + 1) - x + 4 = 0
<=> -4x - 4 - x + 4 = 0 <=> x = 0
Tìm nghiệm : a) (2x-3).(2x+3) B)(x-4).(x-1).(x-2) C)2x(3x-1)-3x(5+2x) D)(3x-2).(3x+2)-4.(x-1)
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
\(c,2x\left(3x-1\right)-3x\left(5+2x\right)=0\\ \Leftrightarrow6x^2-2x-15x-6x^2=0\\ \Leftrightarrow-17x=0\\ \Leftrightarrow x=0\\ d,\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\\ \Leftrightarrow9x^2-4-4x+4=0\\ \Leftrightarrow9x^2-4x=0\\ \Leftrightarrow x\left(9x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
Bài 2: (2 điểm) Tìm x, biết:
a) (3x + 4)2 – (3x – 1)(3x + 1) = 49
b) x2 – 4x + 4 = 9(x – 2)
c) x2 – 25 = 3x - 15
d) (x – 1)3 + 3(x + 1)2 = (x2 – 2x + 4)(x + 2)
a) \(\Rightarrow9x^2+24x+16-9x^2+1=49\)
\(\Rightarrow24x=32\Rightarrow x=\dfrac{4}{3}\)
b) \(\Rightarrow x^2-13x+22=0\)
\(\Rightarrow\left(x-11\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=11\\x=2\end{matrix}\right.\)
c) \(\Rightarrow x^2-3x-10=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Bài 1: Thu gọn :
(x+1).(x+2)-3x.(x-4)
Bài 2: Tìm x:
(3x-4).(x-2)=3x.(x-9)
Bài 3: Chứng minh biểu thức không phụ thuộc vào giá trị của biến:
-3x.(x-4).(x-2)-x^2.(-3x+18)+24x-25
1) \(\left(x+1\right)\left(x+2\right)-3x\left(x-4\right)=x^2+3x+2-3x^2+12x=-2x^2+15x+2\)
2) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)\)
\(\Leftrightarrow3x^2-10x+8=3x^2-27x\)
\(\Leftrightarrow17x=-8\Leftrightarrow x=-\dfrac{8}{17}\)
3) \(-3\left(x-4\right)\left(x-2\right)-x^2\left(-3x+18\right)+24x-25\)
\(=-3x^3+6x^2+12x^2-24x+3x^3-18x^2+24x-25=-25\)
Tìm x,
a, /x-1/ + / x-4/=3x
b, /x+1/ + /x+4/ = 3x
c, /x(x-4)/ = x
a) |x - 1| + |x - 4| = 3x (1)
+) Nếu x < 1 => x - 1 < 0; x - 4 < 0 => |x - 1| = 1 - x; |x - 4| = 4 - x
Khi đó (1) trở thành:
1 - x + 4 - x = 3x
=> 5 - 2x = 3x
=> 5 = 3x + 2x
=> 5 = 5x
=> x = 1 (không thoả mãn điều kiện x < 1)
+) Nếu 1 <= x <= 4 => x - 1 >= 0; x - 4 <= 0
=> |x - 1| = x - 1; |x - 4| = 4 - x
Khi đó (1) trở thành: x - 1 + 4 - x = 3x => 3 = 3x
=> x = 1 (thoả mãn)
b)|x+3| ≥ 0;|x+1| ≥ 0
=>|x+3|+|x+1| ≥ 0
Để |x+3|+|x+1|=3x
thì 3x ≥ 0⇒x ≥ 0
=>x+3 > 0 và x+5 > 0
Ta có: x+3+x+1=3x
=>(x+x)+(3+1)=3x
=>2x+4=3x
=>3x-2x=4
=>x=4
Vậy x=4 thỏa mãn
c) lx(x-4)|=x
⇒ x (x − 4) = ±x
Nếu x (x − 4) = x
⇒ x2 − 4x = x
⇒ x2 − 5x = 0
⇒ x (x − 5) = 0
⇒ x = 5
x = 0
Nếu x (x − 4) = −x
⇒ x2 − 4x = −x
⇒ x2 − 3x = 0
⇒ x (x − 3) = 0
⇒ x = 0
x = 3
Vậy x=0 hoặc x=3 hoặc x=5
mỏi tay quá
TÌm x biết
a) |x-1|+|x-4|=3x
b) |x+1|+|x+4|=3x
2 biểu thức đều chung hay là mỗi cái tách riêng
Ta có : x-1 = 0 → x=1
: x-4=0 → x=4
Ta có bảng xét dấu :
x | 1 | 4 | ||||
x-1 | _ | 0 | + | + | | | + |
x-4 | - | | | - | - | 0 | + |
+ Nếu x nhỏ hơn bằng 1 → | x-1| =1-x và | x-4 | =4-x
→ 1-x+4-x =3x
→ 5-2x =3x
→ 5 =5x → x=1
+ Nếu 1 < x < 4 thì | x-1| =x-1 và | x-4 | =4-x rồi thay vào thì ra
+ Nếu x lớn hơn bằng 4 → | x-1 | = x-1 và | x-4| =x-4 rồi thay vào ra
Tìm x, biết:
a) /x+1/+/x+4/=3x
b) /x-1/+/x-4/=3x