Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Bá Duy Cường
Xem chi tiết
Chu Diệu Linh
Xem chi tiết
Lê Hồ Trọng Tín
9 tháng 5 2019 lúc 10:49

Dễ thấy A(x) chỉ có 2 nghiệm là 2 và 1

=>2 và 1 cũng là nghiệm của B(x)

<=>B(1)=0 và B(2)=0

<=>2+a+b+4=0 và 16+4a+2b+4=0

<=>a+b=-6 và 2(2a+b)=-20

<=>a+b=-6 và 2a+b=-10

Suy ra:a=-4 và b=-2

hoang dung yen
Xem chi tiết
hà nguyễn
Xem chi tiết
hà nguyễn
2 tháng 3 2022 lúc 7:27

giúp với

Nguyễn Lê Phước Thịnh
2 tháng 3 2022 lúc 23:05

Đặt f(x)=0

=>(x-1)(x+2)=0

=>x=1 hoặc x=-2

Vì nghiệm của f(x) cũng là nghiệm của g(x) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}1^3+a\cdot1^3+b\cdot1+2=0\\\left(-2\right)^3+a\cdot\left(-2\right)^3+b\cdot\left(-2\right)+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+2b=-6\\-8a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)

Nguyên
Xem chi tiết
Nguyễn Ngọc Huy Toàn
13 tháng 4 2022 lúc 13:01

Bài 1.

a.\(\left(x-8\right)\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

\(\Leftrightarrow4x-3-x-5=30-3x\)

\(\Leftrightarrow4x-x+3x=30+5+3\)

\(\Leftrightarrow6x=38\)

\(\Leftrightarrow x=\dfrac{19}{3}\)

Akai Haruma
13 tháng 4 2022 lúc 13:03

Bài 1:

a. $(x-8)(x^3+8)=0$

$\Rightarrow x-8=0$ hoặc $x^3+8=0$

$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$

$\Rightarrow x=8$ hoặc $x=-2$

b.

$(4x-3)-(x+5)=3(10-x)$

$4x-3-x-5=30-3x$

$3x-8=30-3x$

$6x=38$
$x=\frac{19}{3}$

Akai Haruma
13 tháng 4 2022 lúc 13:05

Bài 2:

$f(x)=(x-1)(x+2)=0$

$\Leftrightarrow x-1=0$ hoặc $x+2=0$

$\Leftrightarrow x=1$ hoặc $x=-2$

Vậy $g(x)$ cũng có nghiệm $x=1$ và $x=-2$

Tức là:

$g(1)=g(-2)=0$

$\Rightarrow 1+a+b+2=-8+4a-2b+2=0$

$\Rightarrow a=0; b=-3$

hà nguyễn
Xem chi tiết
ILoveMath
25 tháng 2 2022 lúc 8:13

a, Thay x=2 vào A(x) ta có:
\(x^2-2x=\left(-2\right)^2-2.\left(-2\right)=4-\left(-4\right)=8\)

\(b,A\left(x\right)=x^2-2x=0\\ \Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
25 tháng 2 2022 lúc 8:13

a: \(A\left(-2\right)=\left(-2\right)^2-2\cdot\left(-2\right)=8\)

b: Đặt A(x)=0

=>x(x-2)=0

=>x=0 hoặc x=2

Nguyễn Huy Tú
25 tháng 2 2022 lúc 8:13

a, Ta có \(A\left(-2\right)=4-2\left(-2\right)=4+4=8\)

b, \(A\left(x\right)=x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow x=0;x=2\)

Nguyễn Cát Anh
Xem chi tiết
minh mọt sách
12 tháng 5 2015 lúc 13:25

vì 1 là 1 nghiệm của f(x) nên a*12+b*1+c=0 hay a+b+c=0

ta có g(1)=c*12+b*1+a=a+b+c=0

vậy 1 là 1 nghiệm của g(x)

Thư Nguyễn Nguyễn
Xem chi tiết
Hải Ninh
7 tháng 8 2016 lúc 11:14

Câu 1:

a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)

 

\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)

c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)

\(P\left(0\right)=0\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)

 

 

Phuoc Tran
Xem chi tiết
Akai Haruma
22 tháng 4 2021 lúc 19:14

Lời giải:

$M(x)=(6+4x)(-x+2)=0$

\(\Leftrightarrow \left[\begin{matrix} 6+4x=0\\ -x+2=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-\frac{3}{2}\\ x=2\end{matrix}\right.\)

Vậy nghiệm của đa thức $M(x)$ là $x=\frac{-3}{2}$ và $x=2$