Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Phạm
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 8:39

\(a,=\left[x^2\left(x^2-x-1\right)+x^3+x^2-3x-1\right]:\left(x^2-x-1\right)\\ =\left[x^2\left(x^2-x-1\right)+x\left(x^2-x-1\right)+2x^2-2x-1\right]\\ =\left[x^2\left(x^2-x-1\right)+x\left(x^2-x-1\right)+2\left(x^2-x-1\right)+1\right]:\left(x^2-x-1\right)\\ =\left[\left(x^2+x+2\right)\left(x^2-x-1\right)+1\right]:\left(x^2-x-1\right)=x^2+x+2R1\)

 

Huỳnh Xương Hưng
Xem chi tiết
Nguyễn Huy Tú
28 tháng 1 2022 lúc 13:37

a, \(A=2x^3-9x^5+3x^5-3x^2+7x^2-12=-6x^5+2x^3+4x^2-12\)

b, \(B=2x^4+x^2+2x-2x^3-2x^2+x^2-2x+1=2x^4-2x^3+1\)

c, \(C=2x^2+x-x^3-2x^2+x^3-x+3=3\)

Thao Cao Phuong
Xem chi tiết
Akai Haruma
13 tháng 11 2023 lúc 18:00

Yêu cầu đề là gì vậy bạn?

nguyễn quỳnh như
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2022 lúc 22:59

d: \(=\dfrac{3x\left(x-2\right)}{-\left(x-2\right)}=-3x\)

e: \(=\dfrac{x^3+3x^2+x-x^2-3x-1}{x^2+3x+1}=x-1\)

Nii-chan
Xem chi tiết
No Name
Xem chi tiết
Đoàn Đại Dương
23 tháng 11 2016 lúc 19:45

dài thế ai trả lời đc hả ?

Le Minh to
23 tháng 11 2016 lúc 19:51

tu lam di luoi vua thoi

simpfor vtuber
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
20 tháng 6 2023 lúc 11:14

`@` `\text {Ans}`

`\downarrow`

loading...

loading...

loading...

*Máy tớ cam hơi mờ, cậu thông cảm ._.*

Cậu viết lại rõ đề câu c, nhé.

Tường vy Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 12 2021 lúc 22:56

1: \(=x^2+1\)

3: \(=\left(x-y-z\right)^2\)

Lăng Ngọc Khuê
Xem chi tiết
Nguyễn Huy Tú
28 tháng 7 2021 lúc 12:50

undefined

Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 12:55

1) \(\left(x+1\right)^2=x^2+2x+1\)

2) \(\left(2x+1\right)^2=4x^2+4x+1\)

3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)

4) \(\left(2x+3\right)^2=4x^2+12x+9\)

5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)

6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)

7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)

8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)

9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)

10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)