Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dream XD
Xem chi tiết
Yoriichi Tsugikuni
Xem chi tiết
Toru
11 tháng 11 2023 lúc 20:55

Ta có:

\(\left|5a-6b+300\right|^{2011}\ge0\forall a,b\)

\(\left(2a-3b\right)^{2010}\ge0\forall a,b\)

\(\Rightarrow\left|5a-6b+300\right|^{2011}+\left(2a-3b\right)^{2010}\ge0\forall a,b\)

Mặt khác: \(\left|5a-6b+300\right|^{2011}+\left(2a-3b\right)^{2010}=0\)

nên: \(\left\{{}\begin{matrix}5a-6b+300=0\\2a-3b=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5a-6b=-300\\2\cdot\left(2a-3b\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5a-6b=-300\\4a-6b=0\end{matrix}\right.\)

\(\Rightarrow5a-6b-\left(4a-6b\right)=-300-0\)

\(\Rightarrow5a-6b-4a+6b=-300\)

\(\Rightarrow a=-300\)

Khi đó: \(2\cdot\left(-300\right)-3b=0\)

\(\Rightarrow-3b=600\)

\(\Rightarrow b=-200\)

Vậy \(a=-300;b=-200\)

\(\text{#}Toru\)

Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 20:53

\(\left|5a-6b+300\right|^{2011}>=0\forall a,b\)

\(\left(2a-3b\right)^{2010}>=0\forall a,b\)

Do đó: \(\left|5a-6b+300\right|^{2011}+\left(2a-3b\right)^{2010}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}5a-6b+300=0\\2a-3b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5a-6b=-300\\2a-3b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5a-6b=-300\\4a-6b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-300\\3b=2a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=-300\\b=\dfrac{2}{3}a=\dfrac{2}{3}\cdot\left(-300\right)=-200\end{matrix}\right.\)

hà ngọc ánh
Xem chi tiết
Đỗ thị như quỳnh
Xem chi tiết
Kuro Kazuya
27 tháng 12 2016 lúc 20:57

Ta có

\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)

\(=>\frac{x^{2010}}{a^2+b^2+c^2+d^2}+\frac{y^{2010}}{a^2+b^2+c^2+d^2}+\frac{z^{2010}}{a^2+b^2+c^2+d^2}+\frac{t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)

\(=>\left(\frac{x^{2010}}{a^2+b^2+c^2+d^2}-\frac{x^{2010}}{a^2}\right)+\left(\frac{y^{2010}}{a^2+b^2+c^2+d^2}-\frac{y^{2010}}{b^2}\right)+\left(\frac{z^{2010}}{a^2+b^2+c^2+d^2}-\frac{z^{2010}}{c^2}\right)+\left(\frac{t^{2010}}{a^2+b^2+c^2+d^2}-\frac{t^{2010}}{d^2}\right)=0\)

\(=>x^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+y^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\right)+z^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\right)+t^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\right)=0\)

\(Do\left\{\begin{matrix}\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\ne0\end{matrix}\right.\)

\(=>\left\{\begin{matrix}x^{2010}=0\\y^{2010}=0\\z^{2010}=0\\t^{2010}=0\end{matrix}\right.\)

\(=>\left\{\begin{matrix}x=0\\y=0\\z=0\\t=0\end{matrix}\right.\)

Ta có

\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}\)

\(=>T=0^{2011}+0^{2011}+0^{2011}+0^{2011}\\ T=0+0+0+0\\ T=0\)

Đào Thị An Na
7 tháng 3 2018 lúc 21:53

(x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.

Dung Nguyen
Xem chi tiết
Bùi Minh Anh
Xem chi tiết
Trần Ánh Nguyệt
Xem chi tiết
Trương Quỳnh Hoa
Xem chi tiết
Nguyễn Cát Uyên
10 tháng 12 2016 lúc 15:24

(x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.

k co mk nha

Trương Quỳnh Hoa
30 tháng 12 2015 lúc 15:46

khó thì mình mới nhờ các bạn giúp chứ

DO THANH CONG
30 tháng 12 2015 lúc 15:49

bơi vì a=1b=2c=3d=4 => câu tick cho tớ

Trịnh Thuý Hiền
Xem chi tiết
Hoàng Phúc
1 tháng 9 2021 lúc 20:56

M=a+b=c+d=e+f.M=a+b=c+d=e+f.

⇒⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩a7=b11=a+b7+11=M18(1)c11=d13=c+d11+13=M24(2)e13=f17=e+f13+17=M30(3)⇒{a7=b11=a+b7+11=M18(1)c11=d13=c+d11+13=M24(2)e13=f17=e+f13+17=M30(3)

Kết hợp (1),(2)và(3)(1),(2)và(3)

⇒M∈BCNN(18;24;30).⇒M∈BCNN(18;24;30).

⇒M∈{0;360;720;1080;...}⇒M∈{0;360;720;1080;...}

Mà MM là số tự nhiên nhỏ nhất có 4 chữ số.

⇒M=1080.⇒M=1080.

Vậy M=1080.

nhớ cho mình 1 k nhé chúc bạn học tốt

Khách vãng lai đã xóa