A=1/21+1/22+1/23+1/24+...+1/40
CHỨNG tỏ 1/2<A<1
Cho biểu thức : A=1/21+1/22+1/23+1/24+...+1/40. Chứng tỏ 1/2<A<1
ta có :
1/2=1/40+1/40+....+1/40 (20 số hạng)
1/21+1/22+1/23....+1/40(có 20 số hạng)
vì 1/21>1/40
1/22>1/40
..........
1/39>1/40
1/40=1/40
=>A<1/2
A<1 chịu
Ta có
\(\frac{1}{40}< \frac{1}{21}\\ \frac{1}{40}< \frac{1}{22}\\ ...\\ \frac{1}{40}< \frac{1}{39}\)
Mà số phần từ của A là 20
\(\Rightarrow\frac{1}{40}.20< A\Leftrightarrow\frac{1}{2}< A\)
Còn chứng minh bé hơn 1 thì tương tự bạn nhé!
Cho biểu thức A=1/21+1/22+1/23+1/24+.......+1/40
Chứng tỏ: 1/2 bé hơn A bé hơn 1
a) Cho P = 1 + 3 + 32 + 33 +.......+ 3101. Chứng tỏ rằng P⋮13.
b) Cho B = 1 + 22 + 24 +.......+ 22020. Chứng tỏ rằng B ⋮ 21.
c) Cho A = 2 + 22 + 23 +........+ 220. Chứng tỏ A chia hết cho 5.
d) Cho A = 1 + 4 + 42 + 43 +..........+ 498. Chứng tỏ A chia hết cho 21.
e) Cho A = 119 + 118 + 117 +.........+ 11 + 1. Chứng tỏ A chia hết cho 5.
a) P = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13
Vậy P ⋮ 13
b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰
= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)
= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)
= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21
= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21
Vậy B ⋮ 21
c) A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
d) A = 1 + 4 + 4² + ... + 4⁹⁸
= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)
= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)
= 21 + 4³.21 + ... + 4⁹⁷.21
= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21
Vậy A ⋮ 21
e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1
= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)
= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105
= 11⁵.16105 + 16105
= 16105.(11⁵ + 1)
= 5.3221.(11⁵ + 1) ⋮ 5
Vậy A ⋮ 5
Cho biểu thức: A = 1/21 + 1/22 + 1/23 + 1/24 + ... + 1/40. Chứng tỏ 1/2 < A < 1
ai lm dc thì mk sẽ kb vs ngườ đó , và tặng thêm tick nữa nha !!!!!!
1/2=1/40+1/40+...+1/40 có 20 số hạng
1/21+1/22+...+1/40 có 20 số hạng
1/21>1/40
....
1/40=1/40=> 1/2<1/21+1/22+...+1/40
1=1/40+...+1/40 có 40 số hạng mà A chỉ có 20 số hạng
=>1/2<A<1
giúp mk dy , giúp mk dy mak huhu mk dag cần gấp !!!!!
\(A=\frac{1}{21}+\frac{1}{22}+.....+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}=\frac{20}{40}=\frac{1}{2}\)
\(A=\frac{1}{21}+\frac{1}{22}+......+\frac{1}{40}< \frac{1}{21}+\frac{1}{21}+......+\frac{1}{21}=\frac{20}{21}< 1\)
Vậy \(\frac{1}{2}< A< 1\)
A= 1/21+1/22+1/23+...+ 1/40
Chứng tỏ 1/2 < A < 1
Chọn mình nhé
Ta có:
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)
\(< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=1\) (20 p/số 1/20)
Hay A < 1.
Ta lại có:
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)
\(>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{2}\) (20 p/số 1/40)
Hay A > 1
Vậy \(\frac{1}{2}< A< 1\)
A=1/21+1/22+1/23+...+1/40(có 20 phân số)
A>1/40+1/40+1/40+...+1/40(có 20 phân số)
A>20/40=1/2(1)
A=1/21+1/22+1/23+...+1/40(có 20 phân số)
A<1/20+1/20+1/20+...+1/20(có 20 phân số)
A<20/20=1(2)
Từ (1) và (2)=>1/2<A<1
Bài 6 đề 1
Cho : A = 21 + 22 + 23 + 24 + 25 + ... + 290
a) Chứng tỏ A chia hết cho 7
b) Tính A
Số số hạng của A:
90 - 1 + 1 = 90 (số)
Do 90 chia hết cho 3 nên có thể nhóm thành nhóm 3 số hạng
Ta có:
A = 2¹ + 2² + 2³ + ... + 2⁹⁰
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁸⁸ + 2⁸⁹ + 2⁹⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁸⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁸⁸.7
= 7.(2 + 2⁴ + ... + 2⁸⁸) ⋮ 7
Vậy A ⋮ 7
b) A = 2¹ + 2² + 2³ + ... + 2⁹⁰
⇒ 2A = 2² + 2³ + 2⁴ + ... + 2⁹¹
⇒ A = 2A - A = (2² + 2³ + 2⁴ + ... + 2⁹¹) - (2 + 2² + 2³ + ... + 2⁹⁰)
= 2⁹¹ - 2
cho biểu thức A=1/21+1/22+1/23+...+1/40
Hãy chứng tỏ 1/2<A<1
Ta có: \(A=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)(có 20 số hạng \(\frac{1}{40}\))\(=\frac{20}{40}=\frac{1}{2}\)
\(\Rightarrow A>\frac{1}{2}\left(1\right)\)
Ta lại có:\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}
Cho biểu thức:
A = \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)
Hãy chứng tỏ \(\frac{1}{2}\) < A < 1
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{20}{40}=\frac{1}{2}\)
=>A>\(\frac{1}{2}\) (*)
Ta có:\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{20}{20}=1\)
=>A<1 (**)
Từ (*) và (**) => \(\frac{1}{2}< A< 1\)
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)
20 phân số 1/40
\(A>20x\frac{1}{40}=\frac{1}{2}\)
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
20 phân số 1/20
\(A< 20x\frac{1}{20}=1\)
Chứng tỏ 1/2 < A < 1
Cho biểu thức: A= 1/21 + 1/22 + 1/23 + 1/24 +...+ 1/40
Chứng minh rằng 1/2<A<1
Số số hạng của biểu thức A là: (40-21):1+1=20(số hạng)
Ta có : 1/21>1/40,1/22>1/40,1/23>1/40,...,1/40=1/40
1/21+1/22+1/23+...+1/40>1/40+1/40+1/41+1/40+...+1/40( 20 số 1/40)
A>1/40x20=1/2
A>1/20 (1)
Lại có: 1/21=1/21,1/21>1/22,1/21>1/23,...,1/21>1/40
1/21+1/21+1/21+...+1/21(20 số 1/21)>1/21+1/22+1/23+...+1/40
1/21x20>A
20/21>A.Mà 1>20/21
1>A (2)
Từ (1) và (2) ta có : 1/2<A<1(đpcm)
Vậy bài tôán đđcm
\(\frac{1}{2}=\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\)có 20 số hạng \(\)
\(\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}\)có 20 số hạng
\(\frac{1}{21}>\frac{1}{40}\)
\(\frac{1}{22}>\frac{1}{40}\)
\(.....\)
\(\frac{1}{40}=\frac{1}{40}\)\(\Rightarrow\frac{1}{2}< \frac{1}{21}+\frac{1}{22}+.....+\frac{1}{40}\)
\(1=\frac{1}{40}+....+\frac{1}{40}\)có 40 số hạng mà A chỉ có 20 số hạng
\(\Rightarrow\frac{1}{2}< A< 1\)