Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chó Doppy

A= 1/21+1/22+1/23+...+ 1/40
Chứng tỏ 1/2 < A < 1

Phạm Tuấn Kiệt
28 tháng 4 2016 lúc 20:27

Chọn mình nhé  banhqua

Ta có:

\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)

\(< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=1\) (20 p/số 1/20)

Hay A < 1.

Ta lại có:

\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)

\(>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{2}\) (20 p/số 1/40)

Hay A > 1

Vậy \(\frac{1}{2}< A< 1\)

Phạm Nguyễn Tất Đạt
28 tháng 4 2016 lúc 20:41

A=1/21+1/22+1/23+...+1/40(có 20 phân số)

A>1/40+1/40+1/40+...+1/40(có 20 phân số)

A>20/40=1/2(1)

A=1/21+1/22+1/23+...+1/40(có 20 phân số)

A<1/20+1/20+1/20+...+1/20(có 20 phân số)

A<20/20=1(2)

Từ (1) và (2)=>1/2<A<1

Phạm Tuấn Kiệt
28 tháng 4 2016 lúc 20:22

Chờ tí mình làm cho