Cho x, y là các số nguyên thỏa mãn: \(\frac{x^2+xy+1}{y^2+xy+1}\)là một số nguyên. Tính giá trị của biểu thức:
A = \(\frac{2015xy}{2014x^2+2016y^2}\)
Mình đang cần gấp. Cám ơn các bác rất nhiều
Cho x, y là các số nguyên thỏa mãn: $\frac{x^2+xy+1}{y^2+xy+1}$x2+xy+1y2+xy+1 là một số nguyên. Hãy tính giá trị của biểu thức:
$A=\frac{2015xy}{2014x^2+2016y^2}$A=2015xy2014x2+2016y2
Toán lớp 8
Cho x, y là các số nguyên thỏa mãn: \(\frac{x^2+xy+1}{y^2+xy+1}\) là một số nguyên. Hãy tính giá trị của biểu thức:
\(A=\frac{2015xy}{2014x^2+2016y^2}\)
Cho x, y là các số nguyên thỏa mãn: \(\frac{x^2+xy+1}{y^2+xy+1}\) là một số nguyên. Hãy tính giá trị của biểu thức:
\(A=\frac{2015xy}{2014x^2+2016y^2}\)
Cho x, y là các số nguyên dương thỏa mãn à một số nguyên. Hãy tính giá trị của biểu thức
A=\(\frac{2015xy}{2014x^2+2016y^2}\)
B1 cho các số nguyên a,b,c,d thỏa mãn đồng thời 2 điều kiện sau a+b+c=d+1 và a^2+b^2+c^2=d^2+2d-1 chứng minh rằng (a^2+1)(b^2+1)(c^2+1) là số chính phương
B2 cho biểu thức A=\(\frac{x^2}{y^2+xy}\)-\(\frac{y^2}{x^2-xy}\)-\(\frac{x^2+y^2}{xy}\)(xy\(\ne\)0,y\(\ne\)+-x)
A) rút gọn A
b)tính giá trị của A^2 biết x,y thỏa mãn điều kiện x^2+y^2=3xy
c) chứng minh rằng biểu thức A không nhân giá trị nguyên với mọi giá trị nguyên của x,y thỏa mãn điều kiện ở trên
B3 tìm các cặp số (x;y) thỏa mãn điều kiện 4x^2+2y^2-4xy-16x-2y+41=0
Cho 1/x + 1/y 1/t =0
Tính giá trị :
N=xy/t^2 + yt/x^2 tx/y^2
Mình cần gấp ạ cám ơn các bạn rất nhiều ạ!!
Cho x, y, z là các số nguyên đôi khác nhau thỏa mãn:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính giá trị biểu thức: \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)
\(\Leftrightarrow xy=-yz-zx;yz=-xy-zx;zx=-xy-yz\)
Ta có: x2+2yz=x2+yz+yz=x2+yz-xy-zx=x(x-y)-z(x-y)=(x-y)(x-z)
Tương tự: \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2+2xy=\left(z-x\right)\left(z-y\right)\)
A= \(\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)=\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)
\(=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)
\(=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{xy\left(x-y\right)-xz\left(x-y+y-z\right)+yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\frac{xy\left(x-y\right)-xz\left(x-y\right)-xz\left(y-z\right)+yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)\(=\frac{\left(xy-xz\right)\left(x-y\right)-\left(xz-yz\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\frac{x\left(y-z\right)\left(x-y\right)-z\left(x-y\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=1\)
Cho x; y là các số nguyên dương thả mãn: \(\dfrac{x^2+xy+1}{y^2+xy+1}\) là một số nguyên> Tính Giá trị của A = \(\dfrac{2010xy}{2009x^2+2011y^2}\)
Bài 1 : tìm các cặp số nguyên (x ; y) thỏa mãn :
1) (x - 2)(2x - y + 3) =7
2) xy + x + y = 2
Bài 2 :
Cho a + b = 1. Tính giá trị của M = 2(a^3 + b^3) - 3(a^2 + b^2)
---Cảm ơn mọi người----#đang cần gấp#