Cho x, y là các số nguyên thỏa mãn: $\frac{x^2+xy+1}{y^2+xy+1}$x2+xy+1y2+xy+1 là một số nguyên. Hãy tính giá trị của biểu thức:
$A=\frac{2015xy}{2014x^2+2016y^2}$A=2015xy2014x2+2016y2
Toán lớp 8
Cho x, y là các số nguyên thỏa mãn: \(\frac{x^2+xy+1}{y^2+xy+1}\) là một số nguyên. Hãy tính giá trị của biểu thức:
\(A=\frac{2015xy}{2014x^2+2016y^2}\)
Cho x, y là các số nguyên dương thỏa mãn à một số nguyên. Hãy tính giá trị của biểu thức
A=\(\frac{2015xy}{2014x^2+2016y^2}\)
B1 cho các số nguyên a,b,c,d thỏa mãn đồng thời 2 điều kiện sau a+b+c=d+1 và a^2+b^2+c^2=d^2+2d-1 chứng minh rằng (a^2+1)(b^2+1)(c^2+1) là số chính phương
B2 cho biểu thức A=\(\frac{x^2}{y^2+xy}\)-\(\frac{y^2}{x^2-xy}\)-\(\frac{x^2+y^2}{xy}\)(xy\(\ne\)0,y\(\ne\)+-x)
A) rút gọn A
b)tính giá trị của A^2 biết x,y thỏa mãn điều kiện x^2+y^2=3xy
c) chứng minh rằng biểu thức A không nhân giá trị nguyên với mọi giá trị nguyên của x,y thỏa mãn điều kiện ở trên
B3 tìm các cặp số (x;y) thỏa mãn điều kiện 4x^2+2y^2-4xy-16x-2y+41=0
Cho 1/x + 1/y 1/t =0
Tính giá trị :
N=xy/t^2 + yt/x^2 tx/y^2
Mình cần gấp ạ cám ơn các bạn rất nhiều ạ!!
Cho x, y, z là các số nguyên đôi khác nhau thỏa mãn:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính giá trị biểu thức: \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Bài 1 : tìm các cặp số nguyên (x ; y) thỏa mãn :
1) (x - 2)(2x - y + 3) =7
2) xy + x + y = 2
Bài 2 :
Cho a + b = 1. Tính giá trị của M = 2(a^3 + b^3) - 3(a^2 + b^2)
---Cảm ơn mọi người----#đang cần gấp#
Bài 5 Cho x, y là các số thực thỏa mãn x^2 + y^2 + xy 3x 3y + 3=0. Chứng minh biểu thức P = (3x +2y 6)^1010 + ( xy+1)^1011 + 2021 có giá trị là một số nguyên.
Bài 1: Cho biểu thức:
\(P=\left(\frac{x+1}{x-2}-\frac{2x}{x+2}+\frac{5x+2}{4-x^2}\right):\frac{3x-x^2}{x^2+4x+4}\)
a, Rút gọn biểu thức P
b, tìm x để |P|= 2
c, Tìm giá trị nguyên của x để P nhận giá trị là số nguyên
Bài 2:
a, Phân tích đa thức sau thành nhân tử:
\(\left(x+2\right)\left(2x^2-5x\right)-x^3-8\)
b, Cho x, y, z là các số nguyên khác 0 đôi một khác nhau thỏa mãn:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính giá trị của biểu thức:
\(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Bài 3:Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
\(y\left(x-1\right)=x^2+2\)