Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
linhh linhh
Xem chi tiết
Nguyen Minh Ha
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 8:40

Gọi d=ƯCLN(2n+3;4n+8)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)

=>\(2⋮d\)

mà 2n+3 lẻ

nên d=1

=>ƯCLN(2n+3;4n+8)=1

=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2

Hoán Lê
Xem chi tiết
Minh Hiếu
12 tháng 3 2023 lúc 21:11

Gọi \(d=\left(3n-2,4n-3\right)\)

=> \(\left\{{}\begin{matrix}3n-2⋮d\\4n-3⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}12n-8⋮d\\12n-9⋮d\end{matrix}\right.\)

=> \(12n-8-\left(12n-9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

=> phân số \(\dfrac{3n-2}{4n-3}\) là phân số tối giản

channel Anhthư
Xem chi tiết
Đoàn Đức Hà
14 tháng 5 2021 lúc 16:01

Đặt \(d=\left(n+1,3n+2\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Khách vãng lai đã xóa
Đoàn Đức Hà
14 tháng 5 2021 lúc 16:02

Đặt \(d=\left(2n+1,4n+3\right)\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Khách vãng lai đã xóa
Đoàn Đức Hà
14 tháng 5 2021 lúc 16:03

Đặt \(d=\left(4n+1,12n+7\right)\).

Suy ra \(\hept{\begin{cases}4n+1⋮d\\12n+7⋮d\end{cases}}\Rightarrow\left(12n+7\right)-3\left(4n+1\right)=4⋮d\Rightarrow4n⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Khách vãng lai đã xóa
Cường Phạm
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2023 lúc 21:30

Gọi \(d=ƯC\left(6n+7;3n+2\right)\) với \(d\ge1;d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}6n+7⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Rightarrow6n+7-2\left(3n+2\right)⋮d\)

\(\Rightarrow3⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=3\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}6n+7=3\left(2n+2\right)+1⋮̸3\\3n+2⋮̸3\end{matrix}\right.\) \(\Rightarrow d\ne3\)

\(\Rightarrow d=1\Rightarrow6n+7\) và \(3n+2\) nguyên tố cùng nhau

Hay \(\dfrac{6n+7}{3n+2}\) tối giản với mọi n tự nhiên

Trần Đức Anh
30 tháng 3 2023 lúc 21:57

Gọi d là ƯC(6n+7;3n+2) với d≠0;d ≥1(d∈N)

⇒ 6n+7 ⋮ d

     3n+2 ⋮ d

⇒6n+7 - 2(3n+2)⋮ d

⇒3⋮d

d∈(1;3)

Vậy 6n+7/3n+2 là phân số tối giản vì là nguyên tố cùng nha

 

 

Sinh Nguyễn Thành
10 tháng 4 2023 lúc 21:38

loading...

Senju Kawaragi
Xem chi tiết
Senju Kawaragi
28 tháng 2 2022 lúc 21:16

cíu batngo

Nguyễn Lê Phước Thịnh
28 tháng 2 2022 lúc 21:24

Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+2\right)⋮d\)

\(\Leftrightarrow-1⋮d\)

=>d=1

=>UCLN(2n+1;3n+2)=1

=>2n+1/3n+2 là phân số tối giản

Nguyễn Ngọc Hà My
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
Nguyễn Minh Đăng
10 tháng 2 2021 lúc 10:18

Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)

\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)

=> P/s tối giản

Khách vãng lai đã xóa

Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)

Từ \(\left(1\right)\)\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Rightarrow n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow n^4+2n^2+1⋮d\)

\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))

Vì \(d>0\)\(\Rightarrow d=1\)

\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)

\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên

Khách vãng lai đã xóa
Trần Hà Phương
Xem chi tiết
nguyễn tuấn thảo
17 tháng 8 2018 lúc 8:15

Gọi d là ƯC(n3+2n;n4+3n2+1)

n3+2n chia hết d;n4+3n2+1 chia hết d

n(n3+2n) chia hết d ; n4+3n2+1 chia hết d

n4+2n2 chia hết d; n4+3n2+1 chia hết d

(n4+3n2+1) - (n4+2n2) chia hết d

n2+1 chia hết d

n(n2+1) chia hết d

n3+n chia hết d

(n3+2n)-(n3+n) chia hết d

n chia hết d

nchia hết d

(n2+1)-(n2) chia hết cho d

 1 chia hết d

d=1 

PS tối giản

Trần Thùy Dương
17 tháng 8 2018 lúc 8:16

Gọi d là ước chung của \(n^3+2n\) và \(n^4+3n^2+1\) . ta có :

+) \(n^3+2n⋮d\)

\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)   (1)

Và  \(n^4+3n^2+1-\left(n^4+2n^2\right)=n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2=n^4+2n^2+1⋮d\) (2)

Từ (1) và (2)

\(\Rightarrow\left(n^4+2n^2+1\right)-\left(n^4+2n\right)^2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=\pm1\)

Vậy \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (đpcm)