Tìm nghiệm của đa thức:
x^2-4x+4=0
Tìm nghiệm của đa thức:
x2-4x+4=0
x2-2x+4=0
<=>x2-2x-2x+4=0
<=>x(x-2)-2(x-2)=0
<=>(x-2)(x-2)=0
<=>(x-2)2=0<=>x-2=0<=>x=2
Vậy ......................
x2 - 4x + 4 = 0
=> x (x - 4) = -4 = 2.(-2)
=> x = 2
vậy x = 2 là nghiệm đa thức
x2 - 4x + 4 = 0 => (x - 2)2 = 0 => x - 2 = 0 => x = 2
Vậy x = 2 là nghiệm của đa thức =="
tìm nghiệm của đa thức
a,2x-1=0
b,4x²-16=0
c,x²-2x=0
d,(x-1).(x²-4)=0
e,x³+3x=0
f,x²+3x-4=0
a: 2x-1=0
nên 2x=1
hay x=1/2
b: 4x2-16=0
=>(x-2)(x+2)=0
=>x=2 hoặc x=-2
c: x2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
a: 2x-1=0
nên 2x=1
hay x=1/2
b: 4x2-16=0
=>(x-2)(x+2)=0
=>x=2 hoặc x=-2
c: x2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
a) \(2x-1=0\)
\(2x\) \(=1\)
\(x\) \(=1:2\)
\(x\) \(=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\) là nghiệm của đa thức \(2x-1\)
b) \(4x^2-16=0\)
\(4x^2\) \(=16\)
\(x^2\) \(=16:4\)
\(x^2\) \(=4\)
\(x\) \(=\overset{-}{+}\) \(2\)
Vậy \(x=-2\) hoặc \(x=2\) là nghiệm của đa thức \(4x^2-16\)
c) \(x^2-2x=0\)
\(x.x-2x=0\)
\(x.\left(x-2\right)=0\)
⇒ \(x=0\) hoặc \(x-2=0\)
⇒ \(x=0\) hoặc \(x\) \(=0+2=2\)
Vậy \(x=0\) hoặc \(x=2\) là nghiệm của đa thức \(x^2-2x\)
d) \(\left(x-1\right).\left(x^2-4\right)=0\)
\(\left(x-1\right).\left(x-2\right).\left(x+2\right)=0\)
\(\left\{{}\begin{matrix}x-1=0=0+1=1\\x-2=0=0+2=2\\x+2=0=0-2=-2\end{matrix}\right.\)
Vậy \(x=1\); \(x=2\) hoặc \(x=-2\) là nghiệm của đa thức \(\left(x-1\right).\left(x^2-4\right)\)
e) \(x^3+3x=0\)
\(x.x.x+3x=0\)
\(x.\left(x^2+3\right)=0\)
⇒ \(x=0\) hoặc \(x^2+3=0\)
⇒ \(x=0\) hoặc \(x^2\) \(=0+3\)
⇒ \(x=0\) hoặc \(x^2\) \(=3\) (Không bằng 0)
Vậy \(x=0\) là nghiệm của đa thức \(x^3+3x\)
f) \(x^2+3x-4=0\)
⇒ \(x.\left(x+1\right)+4\left(x-1\right)=0\)
⇒ \(\left(x-1\right).\left(x+4\right)=0\)
⇔\(\left[{}\begin{matrix}x-1=0=0+1=1\\x+4=0=0-4=-4\end{matrix}\right.\)
Vậy \(x=1\) và \(x=-4\) là nghiệm của đa thức \(x^2+3x-4\)
Tìm nghiệm của đa thức 3x^2 - 4x + 12 = 0
Lời giải:
Ta thấy:
$3x^2-4x+12=x^2+(2x^2-4x+2)+10=x^2+2(x^2-2x+1)+10$
$=x^2+2(x-1)^2+10\geq 10>0$ với mọi $x$
Do đó đa thức $3x^2-4x+12$ vô nghiệm.
a) nghiệm không nguyên của đa thức 4x^2-7x+3
b) giá trị lớn nhất của -2x^2+5x-1
c)tìm x: 4x^2-2x+1/4=0
tìm nghiệm của đa thức 2x^4-4x^3
\(\Leftrightarrow2x^3\left(x-2\right)=0\)
=>x=0 hoặc x=2
=> 2x^4 - 4x^3 = 0
<=> 2x^3 ( x - 2 ) = 0
<=> 2x^3= 0 hoặc x-2=0
<=> x=0 hoặc x=2
Vậy nghiệm của đa thức 2x^4-4x^3 là x=0 hoặc x=2
( Dấu hoặc là dấu vuông 2 cái á . Tại đt mình k biết viết í )
Chúc b học tốt:3
tìm nghiệm của đa thức
a. x2 - 4x + 4 = 25
b. ( 5 - 2x)2 - 16 = 0
a) x2-4x+4=25
=> (x-2)2 =25
=>(x-2)2 -25=0
=>(x-2)2 -52=0
=> (x-2-5)(x-2+5)=0
=> x-7=0 hoặc x+3=0
th1: x-7=0
=> x =7
th2: x+3 =0
=> x = -3
Vậy tập nghiệm của S={7; -3}
b) (5-2x)2-16=0
=> (5-2x)2-42=0
=>(5-2x-4)(5-2x+4)=0
th1: 1-2x=0
=> -2x =-1
=> x =1/2
th2: 9-2x=0
=> -2x =-9
=> x =9/2
Vậy tập nghiệm của S={1/2;9/2}
tìm ngiệm A(x)=x^3+3^2-4x B(x)=-2x^3+3^2+4x+1
Chứng tỏ rằng x=0 là nghiệm của đa thức A(x) nhưng không là nghiệm của đa
thức B(x)
Bài làm:
Ta có: \(A\left(x\right)=x^3+3x^2-4x=x\left(x-1\right)\left(x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\\x+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-4\end{cases}}\)là nghiệm của A(x)
Vậy x = 0 là nghiêm của A(x)
Mà tại x = 0 thì giá trị của B(x) là:
\(B\left(0\right)=-2.0^3+3.0^2+4.0+1=1\)
=> x = 0 không là nghiệm của B(x)
Bạn viết đề rõ hơn được không ạ ?
Lp 7 cái phương trình bậc 3 kia, bấm máy ra số vô tỉ
Cái j mà x = 0 là nghiệm đa thức A ? logic nhỉ !
Tìm nghiệm của đa thức 3x^4 + 4x^2
3x4+4x2 = x2(3x2+4) = 0
x=0
3x^2+4 =0 vo nghiem
vay da thuc co 1 nghiem duy nhat x =0
Tìm nghiệm của đa thức: 3x^4 + 4x^2
Đặt \(A=3x^4+4x^2\)
Ta có: \(\hept{\begin{cases}3x^4\ge0\\4x^2\ge0\end{cases}}\Rightarrow\)\(A=3x^4+4x^2\ge0\)
Vậy A có nghiệm \(\Leftrightarrow3x^4=4x^2=0\Leftrightarrow x=0\)
Vậy nghiệm của đa thức \(3x^4+4x^2\) là 0
\(3x^4+4x^2=0\)
\(\Rightarrow x^2\left(3x^2+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\3x^2+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\Rightarrow x=0}\)
Vậy đa thức cóp nghiệm là 0