Tìm m để
x4 - x3 - (m + 1)x2 + (m2 + m + 1)x - m2 ≥ 0 ∀x ∈ R
Có bao nhiêu giá trị nguyên m để hàm số y = ( m 2 - 1 ) x 3 + ( m - 1 ) x 2 - x + 4 nghịch biến trên R
A. 1
B. 2
C. 0
D. 3
Bài 1. Cho hàm số: y = 1/3 x3 - mx2 +(m2 - m + 1)x + 1. Với giá trị nào của m thì hàm số đạt cực đại tại điểm x = 1
Bài 2. Cho hàm số y = 1/3 x3 + (m2 - m + 2) x2 + (3m2 + 1)x + m - 5. Tìm m để hàm số đạt cực tiểu tại x = -2 .
Bài 3. Cho hàm số y = 1/3 x3 - (m+1) x2 + (m2 + 2m)x + 1 (m là tham số). Tìm tất cả tham số thực m để hàm số đạt cực tiểu tại x = 2.
Bài 4. Tìm tất cả tham số thực m để hàm số y = (m-1)x4 - (m2 - 2) x2 + 2016 đạt cực tiểu tại
x = -1.
Bài 5. Tìm giá trị của tham số m để hàm số y = x3/3 +(2m - 1)x2 + (m - 9)x + 1 đạt cực tiểu tại
x = 2 .
Đừng hỏi tại sao tui ngu!!!
Giúp.com.vn
tìm giá trị lớn nhất của tham số m để f(x)=x2-2(m+1)x+m2+2m<0 \(\forall x\in R\)
Muốn một tam thức bậc 2 nhỏ hơn 0 với mọi x thì hệ số a phải nhỏ hơn 0 và Δ < 0 luôn
Cơ mà 1 > 0 rồi nên không có m thoả mãn
Để f(x)<0
`<=>a<0,\Delta<0`
`<=>1<0` vô lý.
Vậy BPT vô nghiệm
Tìm tất cả các giá trị của tham số m để bất phương trình (m2+2)x2-2(m+1)x+1>0,∀x∈R
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2>0\left(luôn-đúng\right)\\\Delta'< 0\end{matrix}\right.\) \(\Leftrightarrow\left(m+1\right)^2-\left(m^2+2\right)< 0\Leftrightarrow2m-1< 0\Leftrightarrow m< \dfrac{1}{2}\)
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = ( m 2 - 9 ) x 3 + ( m - 3 ) x 2 - x + 1 nghịch biến trên R
A. 6
B. 4
C. 3
D. 5
Với giá trị nào của m thì mỗi PT sau có nghiệm kép ? Tìm nghiệm kép đó?
a) mx2 + 2(m + 2) x + 9 = 0 b) x2 – 2(m - 4) x+( m2 + m + 3 ) = 0
c)( m + 1) x2 – m3x + m2 ( m – 1) = 0 d) (m + 3) x2 – mx +m = 0
a: \(\Leftrightarrow\left(2m+4\right)^2-4m\cdot9=0\)
\(\Leftrightarrow4m^2+16m+16-36m=0\)
\(\Leftrightarrow m^2-5m+4=0\)
\(\Leftrightarrow\left(m-1\right)\left(m-4\right)=0\)
hay \(m\in\left\{1;4\right\}\)
b: \(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2+m+3\right)=0\)
\(\Leftrightarrow4m^2-32m+64-4m^2-4m-12=0\)
=>-36m+52=0
=>-36m=-52
hay m=13/9
d: \(\Leftrightarrow m^2-4m\left(m+3\right)=0\)
\(\Leftrightarrow m\left(m-4m-12\right)=0\)
=>m(-3m-12)=0
=>m=0 hoặc m=-4
a) PT có nghiệm kép khi △=0
\(\Leftrightarrow\left[2\left(m+2\right)\right]^2-4.m.9=0\)
\(\Leftrightarrow4\left(m^2+4m+4\right)-36m=0\)
\(\Leftrightarrow4m^2-20m+16=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=1\end{matrix}\right.\)
Khi đó nghiệm kép của pt là \(x_1=x_2=\dfrac{-2\left(m+2\right)}{2.m}=\dfrac{-2m-4}{2m}=-1-\dfrac{2}{m}\)
+Khi m=4 thì \(x_1=x_2=-1-\dfrac{2}{4}=-\dfrac{3}{2}\)
+Khi m=1 thì \(x_1=x_2=-1-\dfrac{2}{1}=-3\)
Tìm giá trị của tham số m để hàm số
a) y = x 3 + (m + 3) x 2 + mx – 2 đạt cực tiểu tại x = 1
b) y = −( m 2 + 6m) x 3 /3 − 2m x 2 + 3x + 1 đạt cực đại tại x = -1;
a) y′ = 3 x 2 + 2(m + 3)x + m
y′ = 0 ⇔ 3 x 2 + 2(m + 3)x + m = 0
Hàm số đạt cực trị tại x = 1 thì:
y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3
Khi đó,
y′ = 3 x 2 – 3;
y′′ = 6x;
y′′(1) = 6 > 0;
Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.
b) y′ = −( m 2 + 6m) x 2 − 4mx + 3
y′(−1) = − m 2 − 6m + 4m + 3 = (− m 2 − 2m – 1) + 4 = −(m + 1)2 + 4
Hàm số đạt cực trị tại x = -1 thì :
y′(−1) = − ( m + 1 ) 2 + 4 = 0 ⇔ ( m + 1 ) 2 = 4
⇔
Với m = -3 ta có y’ = 9 x 2 + 12x + 3
⇒ y′′ = 18x + 12
⇒ y′′(−1) = −18 + 12 = −6 < 0
Suy ra hàm số đạt cực đại tại x = -1.
Với m = 1 ta có:
y′ = −7 x 2 − 4x + 3
⇒ y′′ = −14x − 4
⇒ y′′(−1) = 10 > 0
Suy ra hàm số đạt cực tiểu tại x = -1
Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.
Tìm tất cả các giá trị của m để hàm số y = x3/3 – (m + 1)x2 + (m2 – 3)x – 1 đạt cực trị tại x = -1
A. m = 0
B. m = -2
C. m = 0; m = -2
D. m = 0; m = 2
Đáp án A.
Tập xác định D = R.
y' = x2 – 2(m + 1)x + m2 – 3, y’’ = 2x – 2(m + 1).
Hàm số đạt cực trị tại x = -1
Vậy m = 0 thì hàm số đạt cực trị tại x = -1
Với giá trị nào của m, hàm số y = x 3 + 2 ( m - 1 ) x 2 + ( m 2 - 4 m + 1 ) x + 2 ( m 2 + 1 ) có hai điểm cực trị x 1 , x 2 thỏa mãn 1 x 1 + 1 x 2 = x 1 + x 2 2
A. m = 5 hoặc m = 1
B. m = 2 hoặc m = 1
C. m = 5
D. m = 1
Chọn A
Ta có y ' = 3 x 2 + 4 ( m - 1 ) x + m 2 - 4 m + 1 . Hàm số có hai cực trị
=> y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=> 4 ( m - 1 ) 2 - 3 ( m 2 - 4 m + 1 ) > 0
<=> m 2 + 4 m + 1 > 0
Áp dụng Vi-ét cho phương trình y’ = 0 có hai nghiệm phân biệt x 1 , x 2 ta có
Đối chiếu điều kiện (*) có m = 5 hoặc m = 1