Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giang
Xem chi tiết
Chiem Nguyênthi
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 8:11

1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)

=-27x^3-18x^2+4x+10

2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27

=7x^3+37x^2+46x+33

5:

\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)

\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)

=7x^3-48x^2+8x-35

Hoàng Huy
Xem chi tiết
Trần Ái Linh
21 tháng 7 2021 lúc 13:47

1) `2x(3x-1)-(2x+1)(x-3)`

`=6x^2-2x-2x^2+6x-x+3`

`=4x^2+3x+3`

2) `3(x^2-3x)-(4x+2)(x-1)`

`=3x^2-9x-4x^2+4x-2x+2`

`=-x^2-7x+2`

3) `3x(x-5)-(x-2)^2-(2x+3)(2x-3)`

`=3x^2-15x-(x^2-4x+4)-(4x^2-9)`

`=3x^2-15x-x^2+4x-4-4x^2+9`

`=-2x^2-11x+5`

4) `(2x-3)^2+(2x-1)(x+4)`

`=4x^2-12x+9+2x^2+8x-x-4`

`=6x^2-5x+5`

to tien cuong
Xem chi tiết
Huy Hoàng
8 tháng 7 2018 lúc 13:08

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

Ẩn danh
Xem chi tiết
Nguyễn Thị Kim
Xem chi tiết
đề bài khó wá
8 tháng 4 2020 lúc 12:55

\(\left(x-1\right)^2-\left(x+1\right)^2=2\left(x+3\right)\)

\(\Leftrightarrow\left(x-1+x+1\right)\left(x-1-x-1\right)=2\left(x+3\right)\)

\(\Leftrightarrow2x\left(-2\right)=2\left(x+3\right)\)

\(\Leftrightarrow-4x=2x+6\)

\(\Leftrightarrow-6x=6\)

\(\Leftrightarrow x=-1\)
2) \(\left(2x-1\right)^2-\left(2x+1\right)^2=4\left(x-3\right)\)

\(\Leftrightarrow\left(2x-1+2x+1\right)\left(2x-1-2x-1\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow4x\left(-2\right)-4x+12=0\)

\(\Leftrightarrow-12x=-12\)

\(\Leftrightarrow x=1\)

3)\(\left(2x+3\right)^2-\left(2x+3\right)\left(2x-4\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(2x+3\right)\left(2x+3-2x+4\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow7\left(2x+3\right)+x^2-4x+4=0\)

\(\Leftrightarrow x^2+10x+25=0\)

\(\Leftrightarrow\left(x+5\right)^2=0\)

\(\Leftrightarrow x=-5\)

4) \(8x^3-\left(x+1\right)^3=3x-3\)

\(\Leftrightarrow8x^3-\left(x^3+3x+3x^2+1\right)-3x+3=0\)

\(\Leftrightarrow7x^3-3x^2-6x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x^2+4x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2+3\sqrt{2}}{7}\\x=\frac{-2-3\sqrt{2}}{7}\end{matrix}\right.\)

5)\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow\left(3x\right)^3-2^3-\left(\left(3x\right)^3-1^3\right)=x-4\)

\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)=x-4\)

\(\Leftrightarrow-7=x-4\)

\(\Leftrightarrow x=-3\)

thien kim nguyen
Xem chi tiết
Smile
26 tháng 4 2021 lúc 19:54

đk: \(_{x+1\ne0\Leftrightarrow x\ne-1}\)\(\dfrac{1-x}{x+1}+3=\dfrac{2x-3}{x+1}\Leftrightarrow\dfrac{1-x}{x+1}+\dfrac{3\left(x+1\right)}{x+1}=\dfrac{2x+3}{x-1}\Leftrightarrow1-x+3x+3-2x-3=0\Leftrightarrow-2x+1=0\Leftrightarrow-2x=-1\Leftrightarrow x=0,5\)

Giang
Xem chi tiết
Thảo Phương
11 tháng 7 2021 lúc 9:15

Sửa lại môn học để các bạn làm nhé em!

Huỳnh Thị Thanh Ngân
11 tháng 7 2021 lúc 9:20

bạn sửa lại môn hôn học đi ạ

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 0:58

14) Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}=\dfrac{2x+4}{x^2-2x-3}\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x+8}{2\left(x-3\right)\left(x+1\right)}\)

Suy ra: \(x^2+x+x^2-3x-4x-8=0\)

\(\Leftrightarrow2x^2-6x-8=0\)

\(\Leftrightarrow x^2-3x-4=0\)

a=1; b=-3; c=-4

Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=-1\left(loại\right);x_2=\dfrac{-c}{a}=4\left(nhận\right)\)

Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 20:50

9) Ta có: \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)

\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)

\(\Leftrightarrow2x^2-2x+5x-5+x^2+2x-3-4-3x^2-10x+x+3=0\)

\(\Leftrightarrow-4x=9\)

hay \(x=-\dfrac{9}{4}\)

Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 21:18

10) Ta có: \(\dfrac{x-1}{x+3}-\dfrac{x}{x-3}=\dfrac{7x-3}{9-x^2}\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3-7x}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(x^2-4x+3-x^2-3x-3+7x=0\)

\(\Leftrightarrow0x=0\)(luôn đúng)

Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}

11) Ta có: \(\dfrac{5+9x}{x^2-16}=\dfrac{2x-1}{x+4}+\dfrac{3x-1}{x-4}\)

\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{9x+5}{\left(x-4\right)\left(x+5\right)}\)

Suy ra: \(2x^2-9x+4+3x^2+12x-x-4-9x-5=0\)

\(\Leftrightarrow5x^2-7x=0\)

\(\Leftrightarrow x\left(5x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)

12) Ta có: \(\dfrac{2x}{2x-1}+\dfrac{x}{2x+1}=1+\dfrac{4}{\left(2x-1\right)\left(2x+1\right)}\)

\(\Leftrightarrow\dfrac{2x\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)

Suy ra: \(4x^2+2x+2x^2-x-4x^2-3=0\)

\(\Leftrightarrow2x^2+x-3=0\)

\(\Leftrightarrow2x^2+3x-2x-3=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 21:19

13) Ta có: \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\)

\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)

Suy ra: \(x^2+2x-x+2-2=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)

quang
Xem chi tiết
Phạm Thành Đông
7 tháng 3 2021 lúc 21:14

\(\frac{1-x}{1+x}+3=\frac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\)

\(\Leftrightarrow\frac{1-x}{x+1}+\frac{3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)

\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)

\(\Rightarrow1-x+3\left(x+1\right)=2x+3\)

\(\Leftrightarrow1-x+3x+3=2x+3\)

\(\Leftrightarrow2x+4=2x+3\)

\(\Leftrightarrow0x=-1\)(vô nghiệm)

Vậy phương trình vô nghiệm.

Khách vãng lai đã xóa
Phạm Thành Đông
7 tháng 3 2021 lúc 21:28

\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\left(ĐKXĐ:x\ne\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{x^2+4x+4}{2x-3}-\frac{2x-3}{2x-3}=\frac{x^2-10}{2x-3}\)

\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2-10}{2x-3}\)

\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)

\(\Leftrightarrow2x+7=-10\)

\(\Leftrightarrow2x=-17\)

\(\Leftrightarrow x=\frac{-17}{2}\)(thỏa mãn ĐKXĐ)

Vậy phương trình có nghiệm duy nhất : \(x=\frac{-17}{2}\)

Khách vãng lai đã xóa
Quỳnh Anh
8 tháng 3 2021 lúc 21:28

Trả lời:

a, \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)\(\left(đkxđ:x\ne-1\right)\)

\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)

\(\Rightarrow1-x+3x+3=2x+3\)

\(\Leftrightarrow4+2x=2x+3\)

\(\Leftrightarrow2x-2x=3-4\)

\(\Leftrightarrow0x=-1\)(không thỏa mãn)

Vậy \(S=\varnothing\)

b, \(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\)\(\left(đkxđ:x\ne\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{\left(x+2\right)^2-\left(2x-3\right)}{2x-3}=\frac{x^2-10}{2x-3}\)

\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)

\(\Leftrightarrow x^2+2x+7=x^2-10\)

\(\Leftrightarrow x^2+2x-x^2=-10-7\)

\(\Leftrightarrow2x=-17\)

\(\Leftrightarrow x=\frac{-17}{2}\)(tm)

Vậy \(S=\left\{\frac{-17}{2}\right\}\)

c, \(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1+\frac{x^2+x-3}{x-1}\)\(\left(đkxđ:x\ne1\right)\)

\(\Leftrightarrow\frac{2-5x}{2x-2}+\frac{2x-1}{2}=1+\frac{x^2+x-3}{x-1}\)

\(\Leftrightarrow\frac{2-5x}{2\left(x-1\right)}+\frac{2x-1}{2}=1+\frac{x^2+x-3}{x-1}\)

\(\Leftrightarrow\frac{2-5x}{2\left(x-1\right)}+\frac{\left(2x-1\right)\left(x-1\right)}{2\left(x-1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)}+\frac{2\left(x^2+x-3\right)}{2\left(x-1\right)}\)

\(\Rightarrow2-5x+2x^2-3x+1=2x-2+2x^2+2x-6\)

\(\Leftrightarrow2x^2-8x+3=2x^2+4x-8\)

\(\Leftrightarrow2x^2-8x-2x^2-4x=-8-3\)

\(\Leftrightarrow-12x=-13\)

\(\Leftrightarrow x=\frac{13}{12}\)(tm)

Vậy \(S=\left\{\frac{13}{12}\right\}\)

Khách vãng lai đã xóa