Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giáp Văn Long
Xem chi tiết
Lê Song Phương
14 tháng 3 2022 lúc 18:09

a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)

Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)

Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.

Câu b mình nhìn không rõ đề, bạn sửa lại nhé.

Khách vãng lai đã xóa
Thầy Cao Đô
Xem chi tiết

1, 

Thay  m=4 phuong trình đã cho trở thành :  \(x^2-9x+20=0\)

\(\Delta=81-80=1\) \(>0\) nên phương trình đã cho có hai nghiệm phân biệt \(x_1=5\) và \(x_2=4\).

2, 

Ta có \(\Delta=\left(2m+1\right)^2-4\left(m^2+m\right)=1>0\) với mọi \(m\) nên phuong trình đã cho có hai nghiệm phân biệt 

\(x_1,x_2\) với mọi \(m.\)

Áp dụng định lý Vi-et : \(\hept{\begin{cases}x_1+x_2=2m+1\\x_1x_2=m^2+m\end{cases}}\)

\(\Rightarrow x_1^2+x_2^2-5x_1x_2=-17\) \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x=-17\Leftrightarrow\left(2m+1\right)^2-7\left(m^2+m\right)=-17\Leftrightarrow m^2+m-6=0\)

\(\Rightarrow\hept{\begin{cases}m=-3\\m=2\end{cases}}\)

Khách vãng lai đã xóa
Bùi Minh Thùy
7 tháng 5 2021 lúc 11:06

undefinedundefined

Khách vãng lai đã xóa
Vũ Thế Thành
7 tháng 5 2021 lúc 14:16

undefinedundefined

Khách vãng lai đã xóa
Thùy Trinh Ngô
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 5 2022 lúc 11:55

1: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-3\right)\)

\(=4m^2-8m+4-4m+12\)

\(=4m^2-12m+16\)

\(=\left(2m-3\right)^2+7>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

2: Theo vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m-3\end{matrix}\right.\)

Ta có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=x_1x_2\)

\(\Leftrightarrow x_1^2+x_2^2=\left(m-3\right)^2\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m-3\right)-\left(m-3\right)^2=0\)

\(\Leftrightarrow4m^2-16m+4-2m+6-m^2+6m-9=0\)

\(\Leftrightarrow3m^2-12m+1=0\)

\(\text{Δ}=\left(-12\right)^2-4\cdot3\cdot1=144-12=132>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{12-2\sqrt{33}}{6}=\dfrac{6-\sqrt{33}}{3}\\x_2=\dfrac{6+\sqrt{33}}{3}\end{matrix}\right.\)

Thầy Cao Đô
Xem chi tiết
Nguyễn Huy Tú
8 tháng 4 2021 lúc 16:57

a, \(x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy tập nghiệm của phương trình là S = { 1 ; 3 } 

b, Ta có : \(\Delta=\left(2m+2\right)^2-4\left(2m-5\right)=4m^2+8m+4-8m+20=4m^2+24>0\forall m\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=2m-5\end{cases}}\)

Ta có : \(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19.1=1.19\)

TH1 : \(\hept{\begin{cases}x_1^2-2mx_1-x_2+2m-3=19\\x_2^2-2mx_2-x_1+2m-3=1\end{cases}}\)

Lấy phương trình (1) + (2) ta được : 

\(x_1^2+x_2^2-2mx_1-2mx_2-x_2-x_1+4m-6=20\)

mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)

\(=4m^2+8m+4-2\left(2m-5\right)=4m^2+4m-6\)

\(\Leftrightarrow4m^2+4m-6-2m\left(2m-2\right)-\left(2m-2\right)+4m-6=20\)

\(\Leftrightarrow4m^2+4m-6-4m^2+4m-2m+2+4m-6=20\)

\(\Leftrightarrow10m=30\Leftrightarrow m=3\)tương tự với TH2, nhưng em ko chắc lắm vì dạng này em chưa làm bao giờ 

Khách vãng lai đã xóa
Nguyễn Ngọc Hà
30 tháng 6 2021 lúc 21:32

x=1 và x=3

Khách vãng lai đã xóa
Vương Khánh Linh
16 tháng 10 2021 lúc 20:59

Khách vãng lai đã xóa
Thanh Trúc
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 16:19

\(\Delta=m^2+12>0\) ; \(\forall m\)

\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)

Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)

Triết Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2022 lúc 22:54

a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)

\(=4m^2-8m+4+4m+12\)

\(=4m^2-4m+16\)

\(=\left(2m-1\right)^2+15>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

b: Theo đề, ta có:

\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)

\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)

\(\Leftrightarrow4m^2-6m>=0\)

=>m<=0 hoặc m>=3/2

Thầy Cao Đô
Xem chi tiết
Nguyễn Mai Hằng
6 tháng 6 2021 lúc 8:53

undefined

Khách vãng lai đã xóa
Nguyễn Ngọc Hà
5 tháng 7 2021 lúc 21:05

a, x = 3 , x= -1

b, m = 3 , m = 1

Khách vãng lai đã xóa
Thảo Nguyễn
Xem chi tiết
Nguyễn Huy Tú
14 tháng 3 2022 lúc 12:54

a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0 

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)

Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)

 

Xem chi tiết
GV
5 tháng 2 2020 lúc 8:22

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

Khách vãng lai đã xóa
Tiểu Bạch Kiểm
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 11:07

a) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)

\(=\left(2m-2\right)^2+4m\)

\(=4m^2-8m+4+4m\)

\(=4m^2-4m+4\)

\(=4m^2-4m+1+3\)

\(=\left(2m-1\right)^2+3>0\forall x\)

Do đó: Phương trình luôn có hai nghiệm x1,x2 với mọi m(Đpcm)

Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 11:12

b) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=-m\end{matrix}\right.\)

Ta có: \(y_1+y_2=x_1+\dfrac{1}{x_2}+x_2+\dfrac{1}{x_1}\)

\(=\left(x_1+x_2\right)+\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)\)

\(=\left(2m-2\right)+\dfrac{2m-2}{-m}\)

\(=2m-2-\dfrac{2m-2}{m}\)

\(=\dfrac{2m^2-2m-2m+2}{m}\)

\(=\dfrac{2m^2-4m+2}{m}\)

\(=\dfrac{2\left(m^2-2m+1\right)}{m}\)

\(=\dfrac{2\left(m-1\right)^2}{m}\)

Ta có: \(y_1y_2=\left(x_1+\dfrac{1}{x_2}\right)\left(x_2+\dfrac{1}{x_1}\right)\)

\(=x_1x_2+2+\dfrac{1}{x_1x_2}\)

\(=-m+2+\dfrac{1}{-m}\)

\(=-m+2-\dfrac{1}{m}\)

\(=\dfrac{-m^2}{m}+\dfrac{2m}{m}-\dfrac{1}{m}\)

\(=\dfrac{-m^2+2m-1}{m}\)

\(=\dfrac{-\left(m-1\right)^2}{m}\)

Phương trình đó sẽ là:

\(x^2-\dfrac{2\left(m-1\right)^2}{m}x-\dfrac{\left(m-1\right)^2}{m}=0\)