Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Nhập
Xem chi tiết
Hà Lê
22 tháng 7 2019 lúc 13:44

sao ko ai trả lời vậy

Nguyễn Đặng Ngọc Thảo
Xem chi tiết
Phạm Hà Linh
Xem chi tiết
Phạm Hương Giang
Xem chi tiết
Nguyễn Thành Đạt
Xem chi tiết
Nguyễn Tiến Dũng
Xem chi tiết
Trần Việt Linh
12 tháng 12 2016 lúc 21:50

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

soyeon_Tiểubàng giải
12 tháng 12 2016 lúc 21:50

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

Lightning Farron
12 tháng 12 2016 lúc 21:52

Thay xyz=2013 vào ta có:

\(\frac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)

\(=\frac{xy\cdot xz}{xy\left(xz+z+1\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz+1+z}{xz+z+1}=1\) (Đpcm)

Cô nàng ngây thơ
Xem chi tiết
Akai Haruma
29 tháng 12 2018 lúc 17:07
Vương Thị Diễm Quỳnh
Xem chi tiết
Nguyễn Nhật Minh
10 tháng 12 2015 lúc 22:10

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Leftrightarrow x=y=z\)

M =\(\frac{y^{670.3}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)

Đề sai nhé  mẫu mũ 2010  => M =1  mới đúng

Lý Thanh Thảo
Xem chi tiết
shitbo
8 tháng 12 2019 lúc 19:42

\(x+y+z=3\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\Leftrightarrow xy+yz+zx=0\left(\text{vì:}x^2+y^2+z^2=9\right)\)

\(xy+yz+zx=0\Rightarrow xy=-yz-zx;yz=-xy-xz;xz=-xy-yz\)

\(P=\frac{-x\left(y+z\right)}{x^2}+\frac{-y\left(z+x\right)}{y^2}+\frac{-z\left(x+y\right)}{z}-4=\frac{y+z}{-x}+\frac{z+y}{-y}+\frac{x+y}{-z}-4\)

\(P=\frac{3}{x}+\frac{3}{y}+\frac{3}{z}-1=\frac{3yz+3xz+3xy}{xyz}-1=0-1=-1\)

Khách vãng lai đã xóa
Lý Thanh Thảo
8 tháng 12 2019 lúc 20:06

Mk k hiểu dòng cuối

Khách vãng lai đã xóa
shitbo
8 tháng 12 2019 lúc 20:18

\(\frac{x+y}{-z}+\frac{y+z}{-x}+\frac{z+x}{-y}-4=\left(\frac{x+y}{-z}-1\right)+\left(\frac{y+z}{-x}-1\right)+\left(\frac{z+x}{-y}-1\right)-1\)

\(=\frac{x+y-\left(-z\right)}{-z}+\frac{y+z-\left(-x\right)}{-x}+\frac{z+x-\left(-y\right)}{-y}-1=\left(x+y+z\right)\left(\frac{1}{-x}+\frac{1}{-y}+\frac{1}{-z}\right)-1\)

\(=\frac{3}{-x}+\frac{3}{-y}+\frac{3}{-z}-1=\frac{-3xy-3yz-3zx}{xyz}-1=0-1=-1\)

Khách vãng lai đã xóa