cho x,y,z,t là 4 số thực khác 0 thỏa mãn y^2=xz,z^2=yt và y^3+z^3+t^ khác 0 cmR y^3+z^3+x^3/y^3+z^3+t^3=x/t
Cho các số thực x, y, z, t khác 0 thỏa mãn: x mũ 2 + y mũ 2 = z mũ 2 + t mũ 2 = 2016 và xz + yt =0
CMR: x mũ 2 + z mũ 2 = y mũ 2 + t mũ 2 = 2016 và xy + zt = 0
Cho x,y,z,t khác 0 thỏa mãn y^2=zt, z^2=yt
Chứng minh x/t = (x^3 + y^3 + z^3)/(y^3 + z^3 + t^3)
a, cho 3 số x, y, z có tổng khác 0 thỏa mãn điều kiện \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Tính giá trị biểu thức \(M=\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)
b, CMR: Nếu a + c = 2b và 2bd = c(b + d) thì \(\frac{a}{b}=\frac{c}{d}\)với b, d khác 0
c, Cho x, y, z là các số khác 0 và x2 = yz; y2 = xz; z2 = xy
CMR: x = y = z
Cho 3 số x, z, y khác 0 thỏa mãn điều kiện : \(\frac{y+z+t-nx}{x}=\frac{z+t+x-ny}{y}=\frac{t+x+-nz}{z}=\frac{x+y+z-nt}{t}\) (n là số tự nhiên) và x+y+z+t=2012. Tính giá trị của bt P = x+2y-3z+t
Cho 3 chữ số x; y; z khác 0 và x + y z khác 0 thỏa mãn điều kiện :
y+z−x/x=z+x−y/y=x+y−z/z
Tính giá trị biểu thức :
B=(1+x/y).(1+y/z).(1+z/x)
Bài 20: (Đăng hộ)
a, cho 3 số x, y, z có tổng khác 0 thỏa mãn điều kiện \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Tính giá trị biểu thức M = \(\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)
b, CMR: Nếu a + c = 2b và 2bd = c(b + d) thì \(\frac{a}{b}=\frac{c}{d}\) với b, d khác 0
c, Cho x, y, z là các số khác 0 và x2 = yz; y2 = xz; z2 = xy
CMR: x = y = z
Cho 3 số x,y,z khác 0 thỏa mãn điều kiện:
\(\frac{y+z+t-nx}{x}=\frac{z+t+x-ny}{y}=\frac{t+x+y-nz}{z}=\frac{x+y+z-nt}{t}\)(n là số tự nhiên)
và x+y+z+t=2012. Tính giá trị biểu thức P=x+2y-3z+t.
a) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức: \(B=\left(1+\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\cdot\left(1+\frac{z}{x}\right)\)
b) Tìm x, y, z biết:
\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)