Tìm các số nguyên dương x, y thỏa mãn: \(x^2y+2xy+y=32x\)
tìm x,y nguyên dương thỏa mãn \(x^2y+2xy+y=32x\)
\(x^2y+2xy+y=32x\)
\(\Leftrightarrow y\left(x^2+2x+1\right)=32\left(x+1\right)-32\)
\(\Leftrightarrow y\left(x+1\right)^2=32\left(x+1\right)-32\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(32-xy-y\right)=32\)
Vì x, y nguyên dương nên:
...( tự làm nhé!)
Tìm x, y nguyên dương thỏa mãn \(x^3+2xy+y=32x\)
\(x^3-32x=-y\left(2x+1\right)\Rightarrow-y=\dfrac{x^3-32x}{2x+1}\)
\(\Leftrightarrow-8y=\dfrac{8x^3-256x}{2x+1}=4x^2-2x-127+\dfrac{127}{2x+1}\)
\(\Rightarrow2x+1=Ư\left(127\right)=\left\{-127;-1;1;127\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=-127\left(loại\right)\\2x+1=-1\left(loại\right)\\2x+1=1\left(loại\right)\\2x+1=127\end{matrix}\right.\) \(\Rightarrow x=63\Rightarrow y=-1953< 0\) (loại)
Pt đã cho không có nghiệm nguyên dương
Cho các số nguyên dương x, y thỏa mãn \(x^2+y^2+2xy-2x+2y\) là một số chính phương. CM x=y
Tìm các số x, y nguyên dương thỏa mãn điều kiện:
2x2 + 2y2 - x - y - 2xy + 1/2 = 0
Ta có: \(2x^2+2y^2-x-y-2xy+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+y^2-2xy\right)+\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}^2\right)=0\)
Nhận xét \(\left(x-y\right)^2\ge0;\left(x-\frac{1}{2}\right)^2\ge0;\left(y-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-\frac{1}{2}\right)^2=0\\\left(y-\frac{1}{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Leftrightarrow}x=y=\frac{1}{2}}\)
Tìm cặp số nguyên dương x,y thỏa mãn:
x√2y−1+y√2x−1=2xy
tìm các số nguyên dương x,y thỏa mãn 2xy+x+y=83
Ta có: 2xy+x+y=83\(\Rightarrow\)4xy+2x+2y=166\(\Rightarrow\)(2x+1) (2y+1)=167\(\Rightarrow\)x,y \(\in\)(0;83), (83;0)
Vì x,y nguyên dương nên ko tồn tại x,y
ta có:\(x+2xy+y=83\)
\(\Leftrightarrow x\left(1+2y\right)+\frac{1}{2}\left(1+2y\right)=\frac{167}{2}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(1+2y\right)=\frac{167}{2}\)
\(\Leftrightarrow\left(2x+1\right)\left(2y+1\right)=167=1.167=167.1\) (vì x,y>0)
với: \(\hept{\begin{cases}2x+1=1\\2y+1=167\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=83\end{cases}}}\)
với \(\hept{\begin{cases}2x+1=167\\2y+1=1\end{cases}\Rightarrow\hept{\begin{cases}x=83\\y=0\end{cases}}}\)
Vậy (x;y)={ (0;83) ; (83;0)}
Theo bài ra \(\Rightarrow\left(2x+1\right)\left(2y+1\right)=165\)
vì x,y thuộc Z và x,y>0 nên 2x+1 và 2y+1 cũng thế
tách 165=11*15=33*5=55*3=165*1
lập bảng làm 8 truờng hợp là ra(ngược lại nữa)
cho x,y là các số thực dương thỏa mãn (x+2019)-y^2=căn(y+2019)-x^2. Tìm Amin=x^2+2xy-2y^2+2y+2019
\(\sqrt{x+2009}-y^2=\sqrt{y+2009}-x^2\)
<=> \(\left(\sqrt{x+2009}-\sqrt{y+2009}\right)+\left(x^2-y^2\right)=0\)
<=> \(\left(x-y\right)\left(\frac{1}{\sqrt{x+2009}+\sqrt{y+2009}}+x+y\right)=0\)
<=> x - y = 0 vì x; y dương
<=> x = y
khi đó: \(A=x^2+2x^2-2x^2+2x+2009=x^2+2x+2009\)
Bạn xem lại đề nhé!
Tìm cặp số nguyên dương x,y thỏa mãn:
\(x\sqrt{2y-1}+y\sqrt{2x-1}=2xy\)
ĐKXĐ: \(x;y\ge\frac{1}{2}\)
Vì x,y khác 0 nên cùng chia 2 vế của pt bđ cho xy ta được
\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)
Ta có: \(\sqrt{2y-1}\le y\)(1)( \(y\ge\frac{1}{2}\))
Thật vậy \(\left(1\right)\Leftrightarrow2y-1\le y^2\)
\(\Leftrightarrow y^2-2y+1\ge0\)
\(\Leftrightarrow\left(y-1\right)^2\ge0\)(Luôn đúng)
Nên (1) đúng \(\Rightarrow\frac{\sqrt{2y-1}}{y}\le1\)
Tương tự \(\frac{\sqrt{2x-1}}{x}\le1\)
Do đó \(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}\le1+1=2\)
Dấu "=" xảy ra <=> x = y = 1 (T/M)
Vậy x = y = 1
Incur: Góp thêm một cách c/m: \(\sqrt{2y-1}\le y\) là dùng cô si ngược nhé
tìm các số nguyên x y thỏa mãn 2xy^2+x+y+1=x^2+2y^2+xy