Cách khác: Ta có \(x^2y+2xy+y=32x\)
\(\Leftrightarrow y\left(x+1\right)^2=32x\).
Từ đó \(32x⋮\left(x+1\right)^2\).
Mà \(\left(x,\left(x+1\right)^2\right)=1\) nên \(32⋮\left(x+1\right)^2\Leftrightarrow\left(x+1\right)^2\in\left\{1;4;16\right\}\).
+) Với \(\left(x+1\right)^2=1\Rightarrow x=0\) (loại)
+) Với \(\left(x+1\right)^2=4\Rightarrow x=1;y=8\)
+) Với \(\left(x+1\right)^2=16\Rightarrow x=3;y=6\).
Vậy...
\(\Leftrightarrow y\left(x^2+2x+1\right)-32x-32=-32\)
\(\Leftrightarrow y\left(x+1\right)^2-32\left(x+1\right)=-32\)
\(\Leftrightarrow\left(x+1\right)\left(xy+y-32\right)=-32\)
Do \(x+1\ge2\) nên chỉ có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}x+1=2\\xy+y-32=-16\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+1=4\\xy+y-32=-8\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}x+1=8\\xy+y-32=-4\end{matrix}\right.\)
TH4: \(\left\{{}\begin{matrix}x+1=16\\xy+y-32=-2\end{matrix}\right.\)
TH5: \(\left\{{}\begin{matrix}x+1=32\\xy+y-32=-1\end{matrix}\right.\)
Bạn tự giải