C/m đa thức vô nghiệm:
a) x(x-1)+1
b) |x|+|x-1|
Bài 2: Chứng to rằng các đa thức sau vô nghiệm:
a) f(x) = x +x+1
b) g(x) = x - x+1
c) mx)=(x-1)² +(x-2)
d) e(x) = |x-1+|x-2|
Bài 4: Tìm nghiệm của đa thức sau:
a) f(x)= x -2x-4
b) g(x) = x² + x +4
c) mx) = 8x - 12x +6x-2
d) n(x)= x+3x +3x+2
4:
a: f(x)=0
=>-x-4=0
=>x=-4
b: g(x)=0
=>x^2+x+4=0
Δ=1^2-4*1*4=1-16=-15<0
=>g(x) ko có nghiệm
c: m(x)=0
=>2x-2=0
=>x=1
d: n(x)=0
=>7x+2=0
=>x=-2/7
Bài 10*. Chứng minh rằng các đa thức sau đây không có nghiệm:
a) f(x) = x2 + 4x + 10 c) f(x) = 5x4 + x2 +
b) g(x) = x2 - 2x + 2017 d) g(x) = 4x2004 + x2018 + 1
`a,`
`f(x)=x^2+4x+10`
\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)
`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)
`->` Đa thức không có nghiệm (vô nghiệm).
`c,`
`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.
Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)
\(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`b,`
`g(x)=x^2-2x+2017`
Vì \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`d,`
`g(x)=4x^2004+x^2018+1`
Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)
\(x^{2018}\ge0\text{ }\forall\text{ }x\)
`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
cho đa thức M=x^3-5x^2y+3y^2-6xz+yz^2-x-z^3
a)tính gái trị M tại x=1;y=2;z=-1
b)tìm đa thức N để M+N là 1 đa thức ko chứa biến x
a) Tại \(x=1;y=2;z=-1\) ta có:
\(M=1^3-5.1^2.2+3.2^2-6.1.\left(-1\right)+2.\left(-1\right)^2-1-\left(-1\right)^3\)
\(M=1-5.1.2+3.4-6.1\left(-1\right)+2.1-1-\left(-1\right)\)
\(M=1-10+12-\left(-6\right)+2-1-\left(-1\right)=11\)
Vậy tại \(x=1;y=2;z=-1\) vào biểu thức M là 11
cho đa thức : h(x) = x^4 + 1/2x^2 + 2012 . chứng tỏ h(x) vô nghiệm
CTR đa thứa : 3x^2010 + x^1002+ 1 vô nghiệm
CTR đa Thức : M(x)= x^2 + 2x + 2 vô nghiệm
CTR đa thức : M(x) = x^2 + 2x + 1 chỉ có 1 nghiệm duy nhất tìm nghiệm duy nhất đó
CMR đa thức M(x) = x^2 - x + 5 không có nghiệm nguyên
C/m đa thức vô nghiệm:
a) x(x-1)+1
b) |x|+|x-1|
a) x lớn hơn hoặc bằng 0
=> x(x-1)+1 lớn hơn hoặc bằng 1 > 0
=> đa thức trên vô nghiệm
vì /x/ luôn lớn hơn hoặc bằng 0
=> /x/ + /x-1/ lớn hơn hoặc bằng 0
=> đa thức trên vô nghiệm
câu này ko chắc
Cho đa thức f(x) = ax^2 + bx + c
chứng tỏ rằng a+b +c =0 thì đa thức f(x) có 1 nghiệm = 1
b áp dụng tìm 1 nghiệm của đa thức f(x) = 5x^2 -6x +1
a: f(1)=0
=>a+b+c=0(luôn đúng)
b: f(x)=0
=>5x^2-6x+1=0
=>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
Cho đa thức.f (x)=2x + \(a^2\) - 3Tìm a để f ( x) có nghiệm:
a) x=1 b) x=\(\dfrac{-1}{2}\)
TK
Phương pháp giải:
- Đa thức f(x) có nghiệm là –2 nên f(–2) = 0, từ đó ta tìm được c.
- Đa thức g(x) có nghiệm là x1=1;x2=2x1=1;x2=2 nên g(1) = 0; g(2) = 0, từ đó ta tìm được a, b.
- Giải h(x) = 0 để tìm nghiệm của h(x).
Giải chi tiết:
a) Đa thức f(x) có nghiệm là –2 nên f(–2) = 0
⇒2.(−2)2−3.(−2)+c=0⇔2.4+6+c=0⇔14+c=0⇔c=−14.⇒2.(−2)2−3.(−2)+c=0⇔2.4+6+c=0⇔14+c=0⇔c=−14.
Vậy đa thức f(x) có nghiệm là –2 thì c=−14c=−14.
b) Đa thức g(x) có nghiệm là x1=1; x2=2x1=1; x2=2 nên g(1) = 0; g(2) = 0
⇒{12+1.a+b=022+2.a+b=0⇔{1+a+b=04+2a+b=0⇔{a+b=−12a+b=−4⇔{b=−1−a2a+(−1−a)=−4⇔{b=−1−a2a−1−a=−4⇔{b=−1−aa−1=−4⇔{b=−1−aa=−4+1⇔{a=−3b=−1−(−3)⇔{a=−3b=2⇒{12+1.a+b=022+2.a+b=0⇔{1+a+b=04+2a+b=0⇔{a+b=−12a+b=−4⇔{b=−1−a2a+(−1−a)=−4⇔{b=−1−a2a−1−a=−4⇔{b=−1−aa−1=−4⇔{b=−1−aa=−4+1⇔{a=−3b=−1−(−3)⇔{a=−3b=2
Vậy đa thức g(x) có hai nghiệm là x1=1; x2=2x1=1; x2=2 thì a=−3; b=2.a=−3; b=2.
c) Ta có: f(x)=2x2−3x−14; g(x)=x2−3x+2.f(x)=2x2−3x−14; g(x)=x2−3x+2.
h(x)=f(x)−g(x)=(2x2−3x−14)−(x2−3x+2)=2x2−3x−14−x2+3x−2=x2−16.h(x)=0⇒x2−16=0⇒x2=16⇒[x=4x=−4h(x)=f(x)−g(x)=(2x2−3x−14)−(x2−3x+2)=2x2−3x−14−x2+3x−2=x2−16.h(x)=0⇒x2−16=0⇒x2=16⇒[x=4x=−4
Vậy tập nghiệm của đa thức h(x) là {4;−4}
Cho đa thức.f (x)=2x +\(a^2\)- 3Tìm a để f ( x) có nghiệm:
a) x=1 b) x=\(\dfrac{-1}{2}\)
TK
Phương pháp giải:
- Đa thức f(x) có nghiệm là –2 nên f(–2) = 0, từ đó ta tìm được c.
- Đa thức g(x) có nghiệm là x1=1;x2=2x1=1;x2=2 nên g(1) = 0; g(2) = 0, từ đó ta tìm được a, b.
- Giải h(x) = 0 để tìm nghiệm của h(x).
Cho đa thức.f (x)=2x +\(a^2\)- 3Tìm a để f ( x) có nghiệm:
a) x=1 b) x=\(\dfrac{-1}{2}\)
f(x)=0 \(\Leftrightarrow\) 2x+a2-3=0 \(\Rightarrow\) x=\(\dfrac{3-a^2}{2}\).
a) x=1 \(\Leftrightarrow\) \(\dfrac{3-a^2}{2}\)=1 \(\Rightarrow\) a=\(\pm\)1.
b) x=\(\dfrac{-1}{2}\) \(\Leftrightarrow\) \(\dfrac{3-a^2}{2}\)=\(\dfrac{-1}{2}\) \(\Rightarrow\) a=\(\pm\)2.