Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Mỹ Lệ
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2023 lúc 22:43

Bài 2:

C=A-B

\(=2x^2-6xy+4y^2+5x^2-4xy-7y^2\)

\(=7x^2-10xy-3y^2\)

\(=7\cdot1^2-10\cdot1\cdot\dfrac{1}{2}-3\cdot\dfrac{1}{4}=7-5-\dfrac{3}{4}=2-\dfrac{3}{4}=\dfrac{5}{4}\)

Υσɾυshἱκα Υυɾἱ
Xem chi tiết
Đỗ Thanh Hải
5 tháng 3 2021 lúc 18:58

Với mọi x, y khác 0 ta có 

\(x^4>0\)

\(y^4>0\)

=> \(x^4.y^4>0\)

=> A > 0 \(\forall x,y\ne0\)

Nguyễn Lê Phước Thịnh
5 tháng 3 2021 lúc 22:19

a) Ta có: \(A=2xy^2\cdot\left(\dfrac{1}{2}x^2y^2x\right)\)

\(=x^4y^4\)

b) Bậc của đơn thức là 8

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 8 2019 lúc 14:11

nguyễn ngọc quyền linh
Xem chi tiết

Gợi ý nhá

Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.

b)  Bạn chỉ cần cho tử và mẫu mũ 3 lên.  theé là dễ r

Nguyệt
27 tháng 10 2018 lúc 20:33

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

tự tính tiếp =)

Nhã Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 14:19

a: \(M=x^5y^3\)

Hệ số là 1

Bậc là 8

Phần biến là x^5;y^3

b: Khi x=1 và y=3 thì M=1^5*3^3=27

Ngọc Bị Bủh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2021 lúc 22:21

Sửa đề: \(K=-x^2y^2\cdot\dfrac{49}{11}\)

a) Ta có: I=HK

\(=\dfrac{3}{7}x^2y\cdot\left(-x^2y^2\right)\cdot\dfrac{49}{11}\)

\(=-\dfrac{21}{11}x^4y^3\)

Biển Ngô
14 tháng 3 2022 lúc 19:14

ôi bạn ơi K đâu

sao thấy mỗi H và Z

Khách vãng lai đã xóa
24.Trần Đỗ Diễm Phúc
Xem chi tiết
Nguyễn Luân Trí
Xem chi tiết
Shiina Mashiro
1 tháng 9 2017 lúc 22:38

bn đánh rõ đề ra nhé mk k hỉu đề lắm =( bằng nhau rùi còn phần j z ?

Steolla
2 tháng 9 2017 lúc 8:31

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Tạ Uy Vũ
Xem chi tiết
HT.Phong (9A5)
2 tháng 11 2023 lúc 15:56

\(A=\left(x-2y\right)\left(x+2y\right)+\left(2y-x\right)^2+2023+4xy\)

\(A=x^2-\left(2y\right)^2+\left(4y^2-4xy+x^2\right)+2023+4xy\)

\(A=x^2-4y^2+4y^2-4xy+x^2+4xy\)

\(A=2x^2+2023\)

Vậy giá trị của biểu thức chỉ phụ thuộc vào x không phụ thuộc vào y 

\(B=\left(2x-3\right)\left(x-y\right)-\left(x-y\right)^2+\left(y-x\right)\left(x+y\right)\)

\(B=2x^2-2xy-3x+3y-\left(x^2-2xy+y^2\right)+y^2-x^2\)

\(B=2x^2-2xy-3x+3y-x^2+2xy-y^2+y^2-x^2\)

\(B=-3x+3y\)

Vậy giá trị của biểu thức vẫn phụ thuộc vào biến 

A = (\(x\) - 2y)(\(x\) + 2y) + (2y - \(x\))2 + 2023 + 4\(xy\)

A = \(x^2\) - 4y2 + 4y2 - 4\(xy\) + \(x^2\) + 2023 + 4\(xy\)

A = (\(x^2\) + \(x^2\)) - (4y2 - 4y2) + 2023 - (4\(xy\) - 4\(xy\))

A = 2\(x^2\) - 0 + 2023 - 0

A = 2\(x^2\) + 2023

Việc chứng minh A có giá trị không phụ thuộc vào giá trị của biến là điều không thể xảy ra.

B = (2\(x\) - 3)(\(x\) - y) - (\(x-y\))2 + (y - \(x\))(\(x\) + y)

B = 2\(x^2\) - 2\(xy\) - 3\(x\) + 3y - \(x^2\) + 2\(xy\) - y2 + y2 - \(x^2\)

B = (2\(x^2\) - \(x^2\) - \(x^2\)) - (2\(xy\) - 2\(xy\)) - 3\(x\) + 3y

B = (2\(x^2\) - 2\(x^2\))  - 0 - 3\(x\) + 3y

B = - 3\(x\) + 3y

Việc chứng minh giá trị biểu thức B không phụ thuộc vào biến là điều không thể