Cho hai số thực không âm x,y ≤ 1. Biết P = l n ( 1 + x 2 ) ( 1 + y 2 ) + 8 17 ( x + y ) 2 có giá trị nhỏ nhất là - a b + 2 ln c d trong đó a, b, c, d là số tự nhiên thỏa mãn ước chung của (a,b) = (c,d) = 1. Giá trị của a+b+c+d là
A. 406
B. 56
C. 39
D. 405
Cho 2 số thực x;y thỏa mãn x , y ≥ 1 và log 3 x + 1 y + 1 y + 1 = 9 − x − 1 y + 1 Biết giá trị nhỏ nhất của biểu thức P = x 3 + y 3 − 57 x + y là một số thực có dạng a + b 7 , a , b ∈ ℤ . Tính giá trị của a+b
A. -28
B. -29
C. -30
D. -31
Cho x, y là các số thực thỏa mãn l o g 4 ( x + y ) + l o g 4 ( x - y ) ≥ 1 . Biết giá trị nhỏ nhất của biển thức P=2x-y là a b ( 1 < a , b ∈ Z ). Giá trị a 2 + b 2
A. a 2 + b 2 =18 x
B. a 2 + b 2 =8
C. a 2 + b 2 =13
D. a 2 + b 2 =20
Cho số phức z = x + y i với x, y là các số thực không âm thỏa mãn z - 3 z - 1 + 2 i và biểu thức P = z 2 - z - 2 + i z 2 - z - 2
z 1 - i + z - 1 + i . Giá trị lớn nhất và giá trị
nhỏ nhất của P lần lượt là:
A. 0 và - 1
B. 3 và - 1
C. 3 và 0
D. 2 và 0
Cho x, y là các số thực thỏa mãn x + y = x - 1 + 2 y + 2 Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của P = x 2 + y 2 + 2 ( x + 1 ) ( y + 1 ) + 8 4 - x - y Tính giá trị M + m
A. 41
B. 44
C. 42
D. 43
Cho hai số thực dương x, y thỏa mãn l o g 3 ( x + y + 2 ) = 1 + l o g 3 x - 1 y + y - 1 x . Giá trị nhỏ nhất của biểu thức x 2 + y 2 x y = a b với a , b ∈ N và (a,b)=1. Hỏi a+b bằng bao nhiêu
A. 2
B. 9
C. 12
D. 13
Cho các số thực x,y thay đổi thỏa mãn log 2 sinx + 2 cosx + 2 = 2 cosx - sinx + 3 . Gọi - a b với a ∈ N * , b ∈ N * , a b tối giản là giá trị nhỏ nhất của biểu thức P= 3 cos 3 x + sin 2 x - 5 cosx . Tính T=a+b.
A.T=200.
B. T=257.
C. T=210.
D. T=240
Cho x, y là hai số không âm thỏa mãn x + y = 2. Giá trị nhỏ nhất của biểu thức
P
=
1
3
x
3
+
x
2
+
y
2
−
x
+
1
A. min P = 5
B. min P = 115 3
C. min P = 7 3
D. min P = 17 3
Cho x, y là hai số không âm thỏa mãn x + y = 2. Giá trị nhỏ nhất của biểu thức P = 1 3 x 3 + x 2 + y 2 - x + 1
A. m i n P = 5
B. m i n P = 7 3
C. m i n P = 17 3
D. m i n P = 115 3