Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
The Scorpion
Xem chi tiết
Quỳnh Anh
5 tháng 8 2021 lúc 8:50

Trả lời:

a, a ( b + c ) - b ( a + c )

= ab + ac - ab - bc

= ( ab - ab ) + ac - bc

= ac - bc

= c( a - b )    (đpcm)

b, d ( a + b - c ) + a ( b - c - d )

= ad + bd - cd + ab - ac - ad

= bd - cd + ab - ac

= ( bd - cd ) + ( ab - ac )

= d( b - c ) + a( b - c )

= ( d + a )( b - c )   (đpcm)

c, 2a ( a - b + c ) - ( b + c ) 

= 2a2 - 2ab + 2ac - b - c 

= ( 2ac - c ) - ( 2ab + b ) + 2a2

= c( 2a - 1 ) - 2b( 2a - 1 ) + 2a2    (đpcm)

Khách vãng lai đã xóa
thanhtruc chuyen mon
5 tháng 8 2021 lúc 8:51

a) = a x b + a x c - b x a + b x c và c x a - c x b

= (a x b - b x a ) + a x c - b x c và c x a - c x b

= (a - b) x c và c x (a - b)

vạy hai biểu thức bặng nhau

 b) = d x a + d x b - d x c  + a x b -a x c - a x d và (d + a) x (b -c)

(d x a - a x d) + (b - c) x d + (b - c ) x a 

=( b-c)x (a + d)

mk lười lắm để tối mk làm tiếp

Khách vãng lai đã xóa
Quỳnh Anh
5 tháng 8 2021 lúc 8:54

sửa lại dòng cuối cùng ý c bài làm của tớ : 

= c( 2a - 1 ) - b ( 2a + 1 ) + 2a2

Khách vãng lai đã xóa
Cao Thi Thuy Duong
Xem chi tiết
Nguyễn Hoàng Dương
Xem chi tiết
Evil
Xem chi tiết
Phùng Minh Quân
12 tháng 10 2018 lúc 19:42

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Leftrightarrow\)\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Leftrightarrow\)\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

+) Xét \(a+b+c+d=0\)

Suy ra : 

\(a+b=-\left(c+d\right)\)

\(b+c=-\left(d+a\right)\)

\(c+a=-\left(b+d\right)\)

\(d+a=-\left(b+c\right)\)

Do đó : \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{c+b}\)

\(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)

\(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(M=-4\)

+) Xét \(a+b+c+d\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=4\)

Do đó : 

\(\frac{a+b+c+d}{a}=4\)\(\Leftrightarrow\)\(a+b+c+d=4a\) \(\left(1\right)\)

\(\frac{a+b+c+d}{b}=4\)\(\Leftrightarrow\)\(a+b+c+d=4b\) \(\left(2\right)\)

\(\frac{a+b+c+d}{c}=4\)\(\Leftrightarrow\)\(a+b+c+d=4c\) \(\left(3\right)\)

\(\frac{a+b+c+d}{d}=4\)\(\Leftrightarrow\)\(a+b+c+d=4d\) \(\left(4\right)\)

Từ (1), (2), (3) và (4) suy ra \(4a=4b=4c=4d\) \(\left(=a+b+c+d\right)\)

\(\Leftrightarrow\)\(a=b=c=d\)

\(\Rightarrow\)\(M=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)

\(\Rightarrow\)\(M=1+1+1+1=4\)

Vậy \(M=-4\) hoặc \(M=4\)

Chúc bạn học tốt ~ 

Phùng Minh Quân
12 tháng 10 2018 lúc 20:15

Ta có : 

\(2a+2b+2c=by+cz+ax+cz+ax+by\)

\(\Leftrightarrow\)\(2\left(a+b+c\right)=2\left(ax+by+cz\right)\)

\(\Leftrightarrow\)\(a+b+c=ax+by+cz\)

+) \(a+b+c=ax+\left(by+cz\right)=ax+2a=a\left(x+2\right)\)

\(\Rightarrow\)\(\frac{1}{x+2}=\frac{a}{a+b+c}\) \(\left(1\right)\)

+) \(a+b+c=by+\left(ax+cz\right)=by+2b=b\left(y+2\right)\)

\(\Rightarrow\)\(\frac{1}{y+2}=\frac{b}{a+b+c}\) \(\left(2\right)\)

+) \(a+b+c=cz+\left(ax+by\right)=cz+2c=c\left(z+2\right)\)

\(\Rightarrow\)\(\frac{1}{z+2}=\frac{c}{a+b+c}\) \(\left(3\right)\)

Từ (1), (2) và (3) suy ra \(M=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)

\(M=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(M=\frac{a+b+c}{a+b+c}=1\)

Vậy \(M=1\)

Chúc bạn học tốt ~ 

Phan Phương Oanh
Xem chi tiết
Hoàng Trần Đình Tuấn
20 tháng 8 2015 lúc 20:36

mình giải câu 1 còn câu 2 từ từ mình suy nghĩ nhé bạn

Cho a/b=c/d suy ra ad=bc

ta có ad+ac=bc+ac

suy ra a/(a+b)=c/(c+d) nếu ko hiểu thì nhắn tin cho mình bước này nhé

=>đpcm

Lương Đại
Xem chi tiết
Doãn Sơn Hoàng
Xem chi tiết
Minh Nguyệt
Xem chi tiết
_BQT_Smod B~ALL~F_
25 tháng 7 2020 lúc 10:19

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)

Khách vãng lai đã xóa
Edogawa Conan
Xem chi tiết
Boboiboybv
5 tháng 3 2018 lúc 15:25

đăng câu hỏi linh tinh

Trần Văn Quyết
5 tháng 3 2018 lúc 15:26

mình có nick sv1 nè lấy o

tk:mnmn@vk.ck

mt:aaaa hoặc cccc

mê zai đẹp
5 tháng 3 2018 lúc 15:28

mẹ ơi cái này chủ yếu để hỏi nick chứ hok hành cái méo j