M=1/6+1/12+1/20+...+1/2009.2010
So sánh A và B biết
A=\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+.............+\(\dfrac{1}{2009.2010}\)và B =\(\dfrac{1502}{3000}\)
\(A=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2009\cdot2010}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\\ =\dfrac{1}{2}-\dfrac{1}{2010}< \dfrac{1}{2}\)\(B=\dfrac{1502}{3000}>\dfrac{1}{2}\)
\(\Rightarrow A< B\)
So sánh cá phân số sau :
2010.2011/2010.2011+1 và 2009.2010/2009.2010+1
Ta có:
2010 . 2011/2010 . 2011 + 1 2009 . 2010/2009 . 2010 + 1
= 1 - 1/2010 . 2011 + 1 = 1 - 1/2009 . 2010 + 1
Vì 2010 . 2011 + 1 > 2009 . 2010 + 1
=> 1/2010 . 2011 + 1 < 1/2009 . 2010 + 1
=> 1 - 1/2010 . 2011 + 1 > 1 - 1/2009 . 2010 + 1
=> 2010.2011/2010.2011+1 > 2009.2010/2009.2010+1
\(\Rightarrow\frac{1}{2010\cdot2011+1}< \frac{1}{2009\cdot2010+1}\)
\(\Rightarrow-\frac{1}{2010\cdot2011+1}>-\frac{1}{2009\cdot2010+1}\)
\(\Rightarrow1-\frac{1}{2010\cdot2011+1}>1-\frac{1}{2009\cdot2010+1}\)
\(\Rightarrow\frac{2010\cdot2011+1-1}{2010\cdot2011+1}>\frac{2009\cdot2010+1-1}{2009\cdot2010+1}\)
\(\Rightarrow\frac{2010\cdot2011}{2010\cdot2011+1}>\frac{2009\cdot2010}{2009\cdot2010+1}\)(ĐPCM)
So sánh E=2009.2010-1/2009.2010 và G=2008.2009-1/2008.2009
Ta có: 2009.2010>2008.2009
\(\frac{1}{2009\cdot2010}< \frac{1}{2008\cdot2009}\)
\(\Rightarrow E>F\)
M=1/2+1/6+1/12+1/20+1/30+1/42
\(M=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{6.7}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{6}-\dfrac{1}{7}=1-\dfrac{1}{7}=\dfrac{6}{7}\)
m= 1/6 + 1/12 +1/20 + ... + 1/132 + 1/156
1/1.2+1/2.3+1/3.4+...+1/2009.2010
= 1 - 1/2 . 1/2 -1/3 . 1/3 - 1/4 ... 1/2009 - 1/2010
= 1 - 1/ 2010
=1/2010
1/1.2+1/2.3+1/3.4+...+1/2009.2010
=1-1/2+1/2-1/3+...+1/2009-1/2010
=1-1/2010
=2009/2010
=(1-1/2)+(1/2-1/3)+...+(1/9-1/10)
=1-1/10
=9/10
1/1.3+1/3.5+1/5.7+...+1/2007.2009+1/2009.2010
2A = 2/1.3 +2/3.5 + 2/5.7 + ... + 2/2007.2009 + 2/2009. 2011
2A = 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/ 2007 - 1/2009 + 1/2009 - 1/2011
Gian uoc het ta co: 2A = 1/1 - 1/2011
2A = 2010/2011
A = 2010/2011 X 1/2
A = 1005/2011
**** mình nha
Tính giá trị biểu thức:
M=1/6+1/12+1/20+...1/2009×2010
\(=>M=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2009\cdot2010}\)
`M=1/2-1/3+1/3-1/4+1/4-1/5+...+1/2009-1/2010`
`M=1/2-1/2010`
`M=502/1005`
Tính 1/1.2+1/2.3+1/3.4+1/4.5+...+1/2009.2010
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2009\cdot2010}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=\frac{1}{1}-\frac{1}{2010}\)
\(=\frac{2010}{2010}-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)