Cho DDEF cân tại D . Trên cạnh DE,DF lấy K;H sao cho DK=DH . Gọi I là giao điểm của EH và FK . Chứng minh:
DIEF cân tại I
cách đều 2 cạnh DE và DF
DI đi qua trung điểm của EF và vuông góc với EF
Giup tui <333 Cho DDEF vuông tại D. Trên tia DF lấy điểm M sao cho FM = FD (M không trùng với D). Trên tia EF lấy điểm N sao cho FN = FE (N không trùng với E)
a) Chứng minh DDEF = DMNF và DE // MN
b) Biết số đo góc E bằng 320, tính số đo góc DFN ?
![]()
a: Xét tứ giác DEMN có
F là trung điểm của DM
F là trung điểm của EN
Do đó: DEMN là hình bình hành
Suy ra: DE//MN
b: Xét ΔDFE có \(\widehat{DFN}\) là góc ngoài
nên \(\widehat{DFN}=32^0+90^0=122^0\)
a) Xét ΔDEF có DE=DF(gt)
nên ΔDEF cân tại D(Định nghĩa tam giác cân)
⇒\(\widehat{DEF}=\widehat{DFE}\)(hai góc ở đáy)
hay \(\widehat{MEF}=\widehat{NFE}\)
Ta có: DM+ME=DE(M nằm giữa D và E)
DN+NF=DF(N nằm giữa D và F)
mà DM=DN(gt)
và DE=DF(gt)
nên ME=NF
Xét ΔMEF và ΔNFE có
ME=NF(cmt)
\(\widehat{MEF}=\widehat{NFE}\)(cmt)
EF chung
Do đó: ΔMEF=ΔNFE(c-g-c)
⇒FM=EN(hai cạnh tương ứng)
Cho ΔDEF vuông tại D biết cạnh DE= 3cm, DF= 4cm. Trên tia đối của tia DF lấy điểm C sao cho DF=DC
a) Tính EF
b) Lấy điểm M trên DE sao cho MD=1cm. CM ΔMDF=ΔMDC
c) CM ΔECF cân
d) Gọi giao điểm của FM với EC là N. CM FN là đường trung tuyến của ΔCEF
( Giúp mình câu D thôi cũng đc nhé )
a: EF=5cm
b: Xét ΔMDF vuông tại D và ΔMDC vuông tại D có
MD chung
FD=CD
Do đó:ΔMDF=ΔMDC
c: Xét ΔECF có
ED là đường cao
ED là đường trung tuyến
Do đó;ΔECF cân tại E
tham khảo
a: EF=5cm
b: Xét ΔMDF vuông tại D và ΔMDC vuông tại D có
MD chung
FD=CD
Do đó:ΔMDF=ΔMDC
c: Xét ΔECF có
ED là đường cao
ED là đường trung tuyến
Do đó;ΔECF cân tại E
Cho ΔDEF vuông tại D biết cạnh DE= 3cm, DF= 4cm. Trên tia đối của tia DF lấy điểm C sao cho DF=DC
a) Tính EF
b) Lấy điểm M trên DE sao cho MD=1cm. CM ΔMDF=ΔMDC
c) CM ΔECF cân
d) Gọi giao điểm của FM với EC là N. CM FN là đường trung tuyến của ΔCEF
a: EF=5cm
b: Xét ΔMDF vuông ạti D và ΔMDC vuông tại D có
MD chung
DF=DC
DO đo: ΔMDF=ΔMDC
c: Xét ΔECF có
ED là đường cao
ED là đường trung tuyến
Do đó: ΔECF cân tại E
Cho ∆DEF cân tại D, kẻ DH vuông góc với EF a) CM: ∆DHE=∆DHF b) Kẻ HA vuông góc với DE, HB vuông góc vs DF. CM: ∆ADB cân c) Trên cạnh EF lấy điểm K sao cho EK=AB, CM: AE=BK Mong mn giúp ạ!
Cho tam giác DEF vuông tại D có DE= 3cm, EF= 5cm
a) Tính độ dài cạnh DE và so sánh các góc của tam giác DEF
b) Trên tia đối của tia DE lấy điểm K sao cho D là trung điểm của đoạn thẳng EK. Chứng minh tam giác EKF cân
c) Gọi I là trung điểm của cạnh EF, đường thẳng KI cắt cạnh DF tại G. Tính GF
d) Đường trung trực d của đoạn thẳng DF cắt đường thẳng KF tại M. Chứng minh ba điểm E, G, M thẳng hàng
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
Cho △DDEF vuông tại D( DF > DE) .Vẽ đường tròn tâm O đường kính DF, cắt EF tại H.
a) Chứng minh DH ⊥ EF (1đ)
b) Từ O vẽ OK vuông góc với HF tại K .Cho OF = 5cm và HF = 8cm. Chứng minh K là trung điểm của HF và tính OK (1,5đ)
c) Chứng minh HE . HF = 4. OK2 (0,5đ)
\(a,\widehat{DHF}=90^0\)(góc nt chắn nửa đg tròn) nên \(DH\perp EF\)
\(b,\left\{{}\begin{matrix}OK\perp HF\\DH\perp HF\end{matrix}\right.\Rightarrow OK//DH;FO=OD\Rightarrow FK=HK\\ \left\{{}\begin{matrix}FO=OD\\FK=HK\end{matrix}\right.\Rightarrow OK.là.đtb.\Delta DFH\)
Lại có \(FD=2FO=10\left(cm\right);DH=\sqrt{FD^2-FH^2}=6\left(cm\right)\left(pytago\right)\)
\(\Rightarrow OK=\dfrac{1}{2}DH=3\left(cm\right)\)
\(c,\) Áp dụng HTL tam giác
\(\Rightarrow DH^2=HE\cdot HF\)
Mà \(2OK=DH\Rightarrow\left(2OK\right)^2=HE\cdot HF\Rightarrow4OK^2=HE\cdot HF\)
cho tam giac DEF cân tại D.trên cạnh DE,DF lấy K;H sao cho DK=dh.gọi i là giao điểm của eh và fk.chứng minh a,tam giác ìe cân tại i b,i cách đều 2 cạnh de và df c,di đi qua trung điểm của ef và vuông góc với ef
hi......:))
giải giúp mk vs.....
camon m.n nhiều........
Cho ΔDEF có DE < DF. Tia phân giác của góc D cắt cạnh EF tại M. Trên cạnh DF lấy điểm N sao cho DE= DN. Chứng minh rằng:
a. ΔDEM= ΔDNM
b.Góc DMF > Góc DME
c. Gọi K là trung điểm của EF, trên tia đối của tia KD lấy điểm G sao cho KG= KD. Chứng minh rằng: DF + FG > 2FK