Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Trang
Xem chi tiết
kieuanh6d
Xem chi tiết
Vũ Tuấn Anh
20 tháng 4 2017 lúc 8:48

\(A=\frac{2010}{2011}\)

nightmare fusion
Xem chi tiết
nguyễn vũ ngọc mai
6 tháng 5 2017 lúc 19:47

h giup minh voi

lưu tuấn anh
Xem chi tiết
ngonhuminh
22 tháng 3 2018 lúc 16:30

\(tuA=1003+1007+\dfrac{2010}{113}+\dfrac{2010}{117}-\dfrac{2010}{119}=2010\left(1+\dfrac{1}{113}+\dfrac{1}{117}-\dfrac{1}{119}\right)\)\(mauA=1003+1008+\dfrac{2011}{113}+\dfrac{2011}{117}-\dfrac{2011}{119}=2011\left(1+\dfrac{1}{113}+\dfrac{1}{117}-\dfrac{1}{119}\right)\)\(\left(1+\dfrac{1}{113}+\dfrac{1}{117}-\dfrac{1}{119}\right)\ne0=>A=\dfrac{2010}{2011}\)

kazuto kirigaya
Xem chi tiết
%$H*&
Xem chi tiết
Khánh Ngọc
30 tháng 4 2019 lúc 8:12

Đề ???

\(A=\frac{1003+1007+\frac{2010}{113}+\frac{2010}{117}-\frac{1003}{119}-\frac{1007}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)

\(=\frac{2010+\frac{2010}{113}+\frac{2010}{117}-\frac{2010}{119}}{2011+\frac{2011}{113}+\frac{2011}{117}-\frac{2011}{119}}\)

\(=\frac{2010.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}{2011.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}\)

\(=\frac{2010}{2011}\)

Đặng Đình Tùng
30 tháng 4 2019 lúc 8:15

\(A=\frac{1003+1007+\frac{2010}{113}+\frac{2010}{117}-\frac{100}{119}-\frac{1007}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)

\(A=\frac{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)+       \(\frac{1+\frac{1}{113}+\frac{1}{117}-\frac{903}{119}-\frac{1}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)          

\(A=1+\frac{1+\frac{1}{113}+\frac{1}{117}-\frac{904}{119}}{2011+\frac{2011}{113}+\frac{2011}{117}-\frac{2011}{119}}\) 

\(A=\frac{1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}-\frac{90.}{119}}{2011+2011.\left(\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}\)

\(A=\frac{\frac{90}{119}}{2010+2011}\)

\(A=\frac{\frac{90}{119}}{4021}\)

                             

JiJenLiRo
30 tháng 4 2019 lúc 10:14

cho mình hỏi làm thế nào để k cho người khác vậy?????

Trần Lê Việt Hoàng
Xem chi tiết
Mỹ Duyên
24 tháng 5 2017 lúc 19:51

Đại số lớp 6

Đan Anh
Xem chi tiết
Phương Trâm
23 tháng 7 2017 lúc 13:31

Ta có:

\(A=\dfrac{1003+1007+\dfrac{2010}{113}+\dfrac{2010}{117}-\dfrac{1003}{119}-\dfrac{1007}{119}}{1003+1008+\dfrac{2011}{113}+\dfrac{2011}{117}-\dfrac{1003}{119}-\dfrac{1007}{119}}\)

\(A=\dfrac{2010+\dfrac{2010}{113}+\dfrac{2010}{117}-\dfrac{2010}{119}}{2011+\dfrac{2011}{113}+\dfrac{2011}{117}-\dfrac{2011}{119}}\)

\(A=\dfrac{2010.\left(\dfrac{1}{1}+\dfrac{1}{113}+\dfrac{1}{117}-\dfrac{1}{119}\right)}{2013.\left(\dfrac{1}{1}+\dfrac{1}{113}+\dfrac{1}{117}+\dfrac{1}{119}\right)}\)

\(\Rightarrow A=\dfrac{2010}{2013}\)

Trần Gia Mẫn
23 tháng 7 2017 lúc 13:35

= \(\dfrac{2028,076341}{2029,093738}\) hoặc 0,9994985954.

Nguyễn Thu Trang
Xem chi tiết