5^(x-2)(x+3)=0
Tìm x biết:
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
c) (x - 1)3 - x2.(x - 2) + 5 = 0.
d) x2 - 4x + 5 = 0.
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
<=> 4x^2 - 4x + 1 - 3x^2 + 12 - 25 = 0
<=> x2 - 4x - 12 = 0
<=> (x+2)(x-6) = 0
<=> x = -2 hoặc x = 6
d) x2 - 4x + 5 = 0.
<=> (x - 2)2 = -1 (vô lý)
Vậy phương trình vô nghiệm
Tìm x nguyên biết :
a) (x^2 -5)×(x^2 +1)=0
b)(x+3)×(x^2+1)=0
c)(x+5)×(x^2+1)<0
d)(x+5)×(x^2-4)=0
e)(x-2)×(-x^2-4)>0
g)(x^2+2)×(x+3)>0
h)(x+4)×|x+5|>0
i)(x+3)×(x-5)>0
\(\left(x^2-5\right)\left(x^2+1\right)=0\)
<=> \(\hept{\begin{cases}x^2-5=0\\x^2+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x^2=5\\x^2=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{5};x=-\sqrt{5}\\x\in\varnothing\end{cases}}\)
câu còn lại tương tự nha
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
a).(x-3)(5-2x)=0
b). (x+5)(x-1)-2x(x-1)=0
c).5(x+3)(x-2)-3(x+5)(x-2)=0
d). (x-6)(x+1)-2(x+1)=0
e). (x-1)2+2(x-1)(x+2)+(x+2)2=0
a) (x - 3)(5 - 2x) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\5-2x=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\\x=\frac{5}{2}\end{matrix}\right.\)
b) (x + 5)(x - 1) - 2x(x - 1) = 0
<=> (x - 1)(x + 5 - 2x) = 0
<=> (x - 1)(5 - x) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
c) 5(x + 3)(x - 2) - 3(x + 5)(x - 2) = 0
<=> (x - 2)[5(x + 3) - 3(x + 5)] = 0
<=> (x - 2)(5x + 3 - 3x - 15) = 0
<=> (x - 2)(2x - 12) = 0
<=> \(\left[{}\begin{matrix}x-2=0\\2x-12=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
d) (x - 6)(x + 1) - 2(x + 1) = 0
<=> (x + 1)(x - 6 - 2) = 0
<=> (x + 1)(x - 8) = 0
<=> \(\left[{}\begin{matrix}x+1=0\\x-8=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)
Câu e thì để mình nghĩ đã :)
#Học tốt!
Giúp luôn Đức Hải Nguyễn câu e:
e, (x - 1)2 + 2(x - 1)(x + 2) + (x + 2)2 = 0
\(\Leftrightarrow\) (x - 1 + x + 2)2 = 0
\(\Leftrightarrow\) (2x + 1)2 = 0
\(\Leftrightarrow\) 2x + 1 = 0
\(\Leftrightarrow\) x = \(\frac{-1}{2}\)
Vậy S = {\(\frac{-1}{2}\)}
Chúc bn học tốt!!
câu e nó là hàng đẳng thức đó (a+b)^2 với a là (x-1) B là x+2 ta có (a+b)^2 = a^2+2.a.b+b^2
a,x+5/x-1+8/x^2-4x+3=x+1/x-3 b,x-4/x-1-x^2+3/1-x^2+5/x+1=0 c,3x/4-5=3-x/2+5x-1/6 d,(x-2)(x+2)-(x-3)(x+4)-2x+3=0 e,(x-1)^2+2(x+1)=5x+5 g,(x-3)(x+4)x=0
a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)
=>(x+5)(x-3)+8=x^2-1
=>x^2+2x-15+8=x^2-1
=>2x-7=-1
=>x=3(loại)
b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)
=>(x-4)(x+1)+x^2+3+5(x-1)=0
=>x^2-3x-4+x^2+3+5x-5=0
=>2x^2+2x-6=0
=>x^2+x-3=0
=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)
e: =>x^2-2x+1+2x+2=5x+5
=>x^2+3=5x+5
=>x^2-5x-2=0
=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)
g: (x-3)(x+4)*x=0
=>x=0 hoặc x-3=0 hoặc x+4=0
=>x=0;x=3;x=-4
Tìm x ϵ z biết
1, 0<x<3
2,0<x≤3
3, -1<x≤4
4, -2≤x≤2
5, -5<x≤0
6, -3<x≤0
7, 0<x-1≤1
8, -1≤x-1<0
9,1≤x-1≤2
10, 1≤x-1<2
11, -3<x<3
12, -3≤x≤3
13, -3<x-1<3
14, -3≤x-1≤3
15, -2<x+1<2
16, -4<x+3<4
17, 0≤x-5≤2
18, x là số không âm và nhỏ hơn 5
19,(x-3) là số không âm và nhỏ hơn 4
20, (x+2) là số dương và không lớn hơn 5
cÁC BẠN ƠI GIÚP MÌNH VS Ạ,MÌNH ĐANG CẦN GẤP!!!!!!
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
Tìm x,biết
1) 3x^2 - 4x = 0
2) (x^2 - 5x) + x - 5 = 0
3) x^2 - 5x + 6 = 0
4) 5x(x-3) - x+3 = 0
5) x^2 - 2x + 5 = 0
6) x^2 + x -6 = 0
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
Bài 1: Tìm x
1/(2.x-5)+17=6
2/10-2.(4-3x)=-4
3/-12+3.(-x+7)=-18
4/24:(3.x-2)=-3
5/-45:5.(-3-2.x)=3
6/x.(x+7)=0
7/(x+12).(x-3)=0
8/(-x+5).(3-x)=0
9/x.(2+x).(7-x)=0
10/(x-1).(x+2).(-x-3)=0
1/(2.x-5)+17=6
=> 2x - 5 = -11
=> 2x = -6
=> x = 3
vậy_
2/10-2.(4-3x)=-4
=> 2(4 - 3x) = 14
=> 4 - 3x = 7
=> 3x = -3
=> x = -1
3/-12+3.(-x+7)=-18
=> 3(-x+7) = -6
=> -x+7 = -2
=> -x = -9
=> x = 9
4/24:(3.x-2)=-3
=> 3x - 2 = -8
=> 3x = -6
=> x = -2
5/-45:5.(-3-2.x)=3
=> 5(-3 - 2x) = -15
=> -3 - 2x = -3
=> - 2x = 0
=> x = 0
6/x.(x+7)=0
=> x = 0 hoặc x + 7 = 0
=> x = 0 hoặc x = -7
7/(x+12).(x-3)=0
=> x + 12 = 0 hoặc x - 3 = 0
=> x = -12 hoặc x = 3
8/(-x+5).(3-x)=0
=> -x + 5 = 0 hoặc 3 - x = 0
=> x = 5 hoặc x = 3
9/x.(2+x).(7-x)=0
=> x = 0 hoặc 2 + x = 0 hoặc 7 - x = 0
=> x = 0 hoặc x = -2 hoặc x = 7
10/(x-1).(x+2).(-x-3)=0
=> x - 1 = 0 hoặc x + 2 = 0 hoặc -x-3 = 0
=> x = 1 hoặc x = -2 hoặc x = -3
em tường anh vô LIÊM SỈ KO CÓ THẬT CƠ
Tìm x
1. x(x+7)=0
2. (x+12)(x-3)=0
3. (-x+5)(3-x)=0
4. x(2+x)(7-x)=0
5. (x-1)(x+2)(-x-3)=0
Làm theo công thức: tích bằng 0 thì một trong x thừa số bằng 0 rồi xét các trường hợp
1. x ( x + 7 ) = 0
( 1 ) x = 0
( 2 ) x + 7 = 0 => x = -7
S = { -7 ; 0 }
2. ( x + 12 ) ( x - 3 ) = 0
( 1 ) x + 12 = 0 => x = -12
( 2 ) x - 3 = 0 => x = 3
S = { -12 ; 3 }
3. ( -x + 5 ) ( 3 - x ) = 0
( 1 ) -x + 5 = 0 => -x = -5 => x = 5
( 2 ) 3 - x = 0 => x = 3
S = { 3 ; 5 }
4. x ( 2 + x ) ( 7 - x ) = 0
( 1 ) x = 0
( 2 ) 2 + x = 0 => x = -2
( 3 ) 7 - x = 0 => x = 7
S = { -2 ; 0 ; 7 }
5. ( x - 1 ) ( x + 2 ) ( -x - 3 ) = 0
( 1 ) x - 1 = 0 => x = 1
( 2 ) x + 2 = 0 => x = -2
( 3 ) -x - 3 = 0 => -x = 3 => x = -3
S = { -3 ; -2 ; 1 }
tìm x
1/ x.(x+7)=0
2/ (x+12).(x-3)=0
3/ (-x+5).(3-x)=0
4/ x.(2+x).(7-x)=0
5/ (x-1).(x+2).(-x-3)=0
\(1,x.\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
\(2,\left(x+12\right).\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(3,\left(-x+5\right).\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
4/ \(x.\left(2+x\right).\left(7-x\right)=0\)
\(\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}}\) => \(\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}\)
Vậy \(x=\left\{0,-2,7\right\}\)
5/ \(\left(x-1\right).\left(x+2\right).\left(-x-3\right)=0\)
\(\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}\)