Bài 4: Bất phương trình bậc nhất một ẩn.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đức Hải Nguyễn

a).(x-3)(5-2x)=0

b). (x+5)(x-1)-2x(x-1)=0

c).5(x+3)(x-2)-3(x+5)(x-2)=0

d). (x-6)(x+1)-2(x+1)=0

e). (x-1)2+2(x-1)(x+2)+(x+2)2=0

Lê Trang
19 tháng 4 2020 lúc 21:42

a) (x - 3)(5 - 2x) = 0

<=> \(\left[{}\begin{matrix}x-3=0\\5-2x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\\x=\frac{5}{2}\end{matrix}\right.\)

b) (x + 5)(x - 1) - 2x(x - 1) = 0

<=> (x - 1)(x + 5 - 2x) = 0

<=> (x - 1)(5 - x) = 0

<=> \(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

c) 5(x + 3)(x - 2) - 3(x + 5)(x - 2) = 0

<=> (x - 2)[5(x + 3) - 3(x + 5)] = 0

<=> (x - 2)(5x + 3 - 3x - 15) = 0

<=> (x - 2)(2x - 12) = 0

<=> \(\left[{}\begin{matrix}x-2=0\\2x-12=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

d) (x - 6)(x + 1) - 2(x + 1) = 0

<=> (x + 1)(x - 6 - 2) = 0

<=> (x + 1)(x - 8) = 0

<=> \(\left[{}\begin{matrix}x+1=0\\x-8=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)

Câu e thì để mình nghĩ đã :)

#Học tốt!

Trương Huy Hoàng
19 tháng 4 2020 lúc 22:10

Giúp luôn Đức Hải Nguyễn câu e:

e, (x - 1)2 + 2(x - 1)(x + 2) + (x + 2)2 = 0

\(\Leftrightarrow\) (x - 1 + x + 2)2 = 0

\(\Leftrightarrow\) (2x + 1)2 = 0

\(\Leftrightarrow\) 2x + 1 = 0

\(\Leftrightarrow\) x = \(\frac{-1}{2}\)

Vậy S = {\(\frac{-1}{2}\)}

Chúc bn học tốt!!

NNNNNN
26 tháng 6 2022 lúc 11:21

câu e nó là hàng đẳng thức đó (a+b)^2 với a là (x-1) B là x+2 ta có  (a+b)^2 = a^2+2.a.b+b^2


Các câu hỏi tương tự
Đức Hải Nguyễn
Xem chi tiết
Ngô Thị Phương Anh
Xem chi tiết
Haruno Sakura
Xem chi tiết
trần quốc khánh
Xem chi tiết
Ngô Thị Phương Anh
Xem chi tiết
hỏa quyền ACE
Xem chi tiết
Tiểu Vân
Xem chi tiết
Lục Thiên Nguyên
Xem chi tiết
Trần Đỗ Nhật Linh
Xem chi tiết