Cho tam giác có 3 cạnh là a;b;c và 3 đường cao tương ứng là ha; hb ; hc .Từ điểm O bất kì trong tam giác hạ các đoạn thẳng có độ dài x;y;z vuông góc với 3 cạnh của tam giác CMR
\(\frac{x}{ha}+\frac{y}{hb}+\frac{z}{hc}\)=1
a) Cho tam giác DEF có góc F là góc tù. Cạnh nào là cạnh có độ dài lớn nhất trong ba cạnh của tam giác DEF?
b) Cho tam giác ABC vuông tại A. Cạnh nào là cạnh có độ dài lớn nhất trong ba cạnh của tam giác ABC?
a) Vì tổng số đo 3 góc trong tam giác là 180° mà F là góc tù
\( \Rightarrow \) F > 90° do F là góc tù
\( \Rightarrow \) D + E < 180° - 90°
\( \Rightarrow \) F là góc lớn nhất trong tam giác DEF
\( \Rightarrow \) Cạnh đối diện góc F sẽ là cạnh lớn nhất tam giác DEF
\( \Rightarrow \) DE là cạnh lớn nhất
b) Tam giác ABC có góc A là góc vuông nên ta có
\( \Rightarrow \widehat B + \widehat C = {90^o} \Rightarrow \widehat B;\widehat C < {90^o}\)
\( \Rightarrow \)A là góc lớn nhất tam giác ABC
\( \Rightarrow \)BC là cạnh lớn nhất tam giác ABC do đối diện góc A
Cho a,b,c là các cạnh của tam giác vuông , h là độ daif đường cao ứng với cạnh huyền a . Chứng minh tam giác có độ dài 3 canh a+h , b+c và h là độ dài 3 cạnh tam giấc vuông.
Ký hiệu:
AB=c; AC=b; cạnh huyền BC=a; đường cao CH=h Ta có
Xét hai t/g vuông AHC và ABC có
\(\widehat{C}\)chung
\(\widehat{CAH}=\widehat{ABC}\)(cùng phụ với \(\widehat{C}\))
=> t/g AHC đồng dạng với ABC \(\Rightarrow\frac{b}{a}=\frac{h}{c}\Rightarrow bc=ah\)
Xét t/g vuông ABC có
\(b^2+c^2=a^2\Rightarrow\left(b+c\right)^2=a^2+2bc\)
\(\Rightarrow\left(b+c\right)^2=a^2+2ah\)( bc=ah chứng minh trên)
\(\Rightarrow\left(b+c\right)^2=\left(a^2+2ah+h^2\right)-h^2=\left(a+h\right)^2-h^2\)
\(\Rightarrow\left(b+c\right)^2+h^2=\left(a+h\right)^2\)
=> b+c; a+h; h là 3 cạnh của tam giác vuông trong đó cạnh huyền là a+h
Sorry!!!
Phần ký hiệu sửa thành
Đường cao AH=h
Cho tam giác ABC có góc A = góc B + 2(góc C) và độ dài 3 cạnh của tam giác là 3 số tự nhiên liên tiếp
a) Tính độ dài 3 cạnh tam giác
Cho 1 tam giác có độ dài 3 cạnh là a, b, c. Biết 20.a = 15. b = 12. c.
Chứng minh tam giác đó là tam giác vuông.
đk : a;b;c > 0
Theo bài ra ta có :
\(20a=15b=12c\Rightarrow\dfrac{20a}{60}=\dfrac{15b}{60}=\dfrac{12c}{60}\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
đề thiếu rồi bạn
Có \(20a=15b=12c\)
=> \(\left\{{}\begin{matrix}a=\dfrac{3}{5}c\\b=\dfrac{4}{5}c\end{matrix}\right.\)
Xét \(\Delta ABC\) có \(a^2+b^2=\left(\dfrac{3}{5}c\right)^2+\left(\dfrac{4}{5}c\right)^2=c^2\)
=> \(\Delta ABC\) là tam giác vuông (định lý Pytago đảo)
cho tam giác có 3 đường cao bằng nhau.
Chứng Minh:
a> Tam giác đó là tam giác đều
b>Biết mỗi đường cao có độ dài là A x 3/2. Tính độ dài mỗi cạnh của tam giác
c> Nếu tam giác đều có cạnh là A thì bán kinhs đường tròn đi qua 3 đỉnh của tam giác là bao nhiêu
Cho tam giác ABC vuông góc tại A có chu vi là 90 cm cạnh AB = 4/3 cạnh AC cạnh BC = 5/3 cạnh AC tính diện tích tam giác abc
Cạnh AC là 3 phần thì cạnh AB là 4 phần và cạnh BC là 5 phần
Độ dài cạnh AB là:
90 : ( 3 + 4 + 5 ) x 4 = 30 (cm)
Độ dài cạnh AC là:
90 : (3 + 4 + 5) x 3 = 22,5 (cm)
Diện tích hình tam giác ABC là:
30 x 22,5 : 2 = 337,5 (cm2)
Đáp số: 337,5 cm2
Bài 1:
Ta có sơ đồ:
AC: /----/----/----/
AB: /----/----/----/----/ Tổng là 90cm
BC: /----/----/----/----/----/
Tổng số phần bằng nhau là:
3 + 4 + 5 = 12 (phần)
Độ dài cạnh AC là:
90 : 12 × 3 = 22,5 (cm)
Độ dài cạnh AB là:
90 : 12 × 4 = 30 (cm)
Diện tích tam giác ABC là:
30 × 22,5 : 2 = 337,5 (cm²)
ĐS:
Cho tam giác ABC vuông góc tại A có chu vi là 90 cm cạnh AB = 4/3 cạnh AC cạnh BC = 5/3 cạnh AC tính diện tích tam giác abc
Cho tam giác có độ 3 cạnh là 17,15,8 cm.Hỏi A đó có phải là tam giác vuông không,vì sao?
Tam giác đó là tam giác vuông vì theo định lí Py- ta- go đảo
172= 289
152+ 82= 289
Suy ra tam giác đó là tam giác vuông.
đây là tam giác vuông vì( nha bn)
vì \(^{17^2}=15^2+8^2\)
Cho tam giác ABC có chu vi là 24cm và các cạnh a : b : c lần lượt tỉ lệ với 3 : 4 : 5
a) Tính các cạnh tam giác ABC
b) tam giác ABC là tam giác gì?
Theo tỉ lệ ta có: \(\begin{cases}\frac{a}{b}=\frac{3}{4}\\\frac{a}{c}=\frac{3}{5}\\a+b+c=24\end{cases}\) \(\Leftrightarrow\begin{cases}b=\frac{4}{3}a\\c=\frac{5}{3}a\\a+b+c=24\end{cases}\) \(\Leftrightarrow\begin{cases}b=\frac{4}{3}a\\c=\frac{5}{3}a\\a+\frac{4}{3}a+\frac{5}{3}a=24\end{cases}\) \(\Leftrightarrow\begin{cases}b=8\\c=10\\a=6\end{cases}\)
b. Tam giác ABC là tam giác vuông . vì : \(8^2+6^2=10^2\)( đúng với pytago)
a) Theo bài ra ta có:
a/b=3/4 ; b/c=4/5 ; a/c=3/5
=> a/3 = b/4 =c/5 và a+b+c=24
Áp dụng tchat dayc tỉ số bằng nhau ta có
a/3=b/4=c/5 =a+b+c/3+4+5=24/12=2
Vì a/3=2 =>a=6
Vì b/4 =2 => b=8
Vì c/5 =2 => c=10
Vậy...........
.
cho tam giác có 3 cạnh là a=x^2-y^2;b=2xy;c=x^2+y^2.hỏi tam giác đã cho là tam giác gì?
Ta có:
\(a^2+b^2=\left(x^2-y^2\right)^2+\left(2xy\right)^2=x^4-2x^2y^2+y^4+4x^2y^2=x^4+2x^2y^2+y^4=\left(x^2+y^2\right)^2=c^2\)
Do ddó tam giác đã cho là tam giác vuông (định lí Pitago đảo)