Tam giác ABC 3 cạnh là a,b,c ( độ dài) và 3 chiều cao tương ứng là ha, hb ,hc. Từ điểm O bất kì năm bên trong tam giác hạ các dường thẳng có độ dài tương ứng là x, y, z vuông góc với 3 cạnh của tam giác ABC.
CMR: \(\frac{x}{ha}+\frac{y}{hb}+\frac{z}{hc}=1\)
cho tam giác ABC có 3 cạnh là a,b,c và 3 chiều cao tương ứng là ha,hb,hc. Từ điểm O bât kì trong tam giác hạ các đoạn có độ dài x,y,z vuông góc với 3 cạnh a,b,c
CMR:\(\frac{x}{ha}+\frac{y}{hb}+\frac{z}{hc}=1\)
Cho △ABC có 3 cạnh là a,b,c và 3 đường cao tương ứng là hA, hB, hC. Từ điểm O bất kì nằm trong △, hạ các đoạn thẳng có độ dài x, y, z vuông góc với 3 cạnh a, b ,c. CM x/hA + y/ hB+ z/ hC = 1.
Help me pls
Cho tam giác ABC , AB =c , BC=a , CA =b và vẽ đường cao tường ứng với 3 cạnh là hc , hb , ha . Gọi r là khoảng cách từ giao điểm 3 đường phân giác đến 3 cạnh tam giác
Chứng minh \(\frac{1}{ha}+\frac{1}{hb}+\frac{1}{hc}=\frac{1}{r}\)
Cho tam giác có 3 cạnh là a,b,c. Các đường cao tương ứng là ha, hb, hc. Biết ha+hb, hb+hc, hc+ha tỉ lệ với 5,6,7. Tính a,b,c biết a+b+c = 62cm
Gọi a,b,c là các cạnh của 1 tam giác có 3 đường cao tương ứng là ha,hb,hc Chứng minh rằng
\(\frac{\left(a+b+c\right)^2}{ha^2+hb^2+hc^2}\ge4\)
TAM GIÁC ABC CÓ 3 CẠNH LÀ A, B, C VÀ 3 ĐƯỜNG CAO TƯƠNG ỨNG LÀ Ha,Hb,Hc
(Ha+Hb):(Hb+Hc):(Hc+Ha)=5:7:8
HỎI A,B,C LẦN LƯỢT TỈ LỆ VỚI 3 SỐ NÀO??
cho a,b,c là 3 cạnh của một tam giác và ha, hb, hc là 3 chiều cao tương ứng.
CMR: (a+b+c)^2/ha^2 + hb^2 + hc^2 lớn hơn hoặc bằng 4