Cho tam giác MNP có góc M = 140°. Góc ngoài tại P có số đo 160°. Chứng minh rằng :
Tam giác MNP cân.
Cho tam giác MNP có N ^ > P ^ . Vẽ phân giác MK.
a) Chứng minh M K P ^ − M K N ^ = N ^ − P ^ .
b) Đường thẳng chứa tia phân giác góc ngoài đỉnh M của tam giác MNP, cắt đường thẳng NP tại E. Chứng minh rằng: M E P ^ = N ^ − P ^ 2
Cho tam giác MNP có N ^ > P ^ .Vẽ phân giác MK.
a) Chứng minh M K P ^ − M K N ^ = N ^ − P ^
b) Đường thẳng chứa tia phân giác góc ngoài đỉnh M của tam giác MNP, cắt đường thẳng NP tại E. Chứng minh rằng: M E P ^ = N ^ − P ^ 2
A) tam giác ABC cân tại A, có góc B = 75 . tính số góc của góc A
b) tam giác MNP cân tại P. Biết góc P có số đo góc = 100. Tính số đo góc của N
c) tam giác MNP có MN = 5cm, MP =12 cm , NP = 13 cm . Hỏi tam giác MNP có phải là tam giác vuông ko vì sao
MÌNH YẾU MÔN TOÁN LẮM MÀ TUẦN NÀY PHẢI NỘP CHO CÔ RỒI
MÌNH MONG MỌI NG GIÚP MÌNH VỚI NHA
a) Từ \(\Delta ABC\)cân tại A, \(\Rightarrow\widehat{B}=\widehat{C}=75^o\)
\(\Rightarrow\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)\)
\(\Rightarrow\widehat{A}=180^o-\left(75^o+75^o\right)\)
\(\Rightarrow\widehat{A}=30^o\)
b) Từ \(\Delta MNP\)cân tại P, \(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{P}}{2}=\frac{80^o}{2}=40^o\)
c) Ta có: \(NP^2=13^2=169\)(1)
\(MN^2+MP^2=5^2+12^2=25+144=169\)(2)
Từ (1) và (2) suy ra: \(NP^2=MN^2+MP^2\)
\(\Rightarrow\Delta MNP\)vuông (theo định lí Pytago)
Happy new year!!!
1. Cho tam giác MNP có góc M = 40 độ, góc N = 100 độ. Chứng minh tam giác MNP là tam giác cân.
2. Cho tam giác ABC có góc A = 80 độ, góc B = 50 độ. Đường thẳng song song với BC cắt tia đối của tia AB tại D và cắt tia đối của tia AC tại E. Chứng minh rằng tam giác ADE là tam giác cân
Bài 1:
Tam giác MNP có: \(\widehat{M}=40^o;\widehat{N}=100^o\)
Tổng số đo 3 góc của 1 tam giác là 180o, ta được:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\\ \Leftrightarrow40^o+100^o+\widehat{P}=180^o\\ \Leftrightarrow140^o+\widehat{P}=180^o\\ \Leftrightarrow\widehat{P}=180^o-140^o=40^o\)
Vì: \(\widehat{M}=\widehat{P}=40^o\) => Tam giác MNP là tam giác cân tại N (ĐPCM)
Cho tam giác MNP cân tại M có MN=3 cm,góc N =60 độ.Tính độ dài của caec cạnh và số đo các góc còn lại của tam giác MNP.Từ đó CM tam giác MNP là tam giác đều
Vì Tam giác `MNP` cân tại `M -> MN = MP,` \(\widehat{N}=\widehat{P}\)
Mà `MN= 3 cm, `\(\widehat{N}=60^0\)
`-> MN = MP = 3 cm, `\(\widehat{N}=\widehat{P}=60^0\)
Xét Tam giác `MNP:`
\(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
`->`\(\widehat{M}+60^0+60^0=180^0\)
`->`\(\widehat{M}=60^0\)
Ta có:
\(\widehat{M}=\widehat{N}=\widehat{P}=60^0\)
`->` \(\text {Tam giác MNP là tam giác đều}\)
`-> MN = MP = NP = 3 cm.`
Cho tam giác MNP có \(\widehat{M}\) = 25o. \(\widehat{N}\) = 80o thì góc ngoài của tam giác tại đỉnh P có số đo bằng?
1. Cho tam giác MNP cân tại M vẽ MH thuộc NP (H thuộc NP)
a) Chứng minh NH = PH
b) Cho MH = 4 cm; NH = 3 cm. Tính MN
2. Cho tam giác MNP vuông tại M, có góc N = 60o và MN = 5 cm. Tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với PN tại E
a) Chứng minh: tam giác MNP = tam giác END
b) Chứng minh: tam giác MNE là tam giác đều
c) Tính độ dài cạnh PN
3. Cho tam giác MNP cân tại M, góc M = 30o; NP = 2 cm. Trên cạnh MP lấy điểm Q sao cho góc PNQ = 60o. Tính độ dài MQ
Cho tam giác MNP cân tại M có M= 50o. Tính số đo góc N?
\(\widehat{N}=\dfrac{180^0-50^0}{2}=65^0\)
Đề bài 1:Cho tam giác ABC cân tại A biết A = 80* . Tính số đo của góc B và C
Để bài 2 :Cho tam giác MNP có MN = 6 cm , MP = 8 cm , NP = 10 cm . Chứng minh tam giác MNP vuông
đề 2 :
MN = 6 cm, MP= 8 cm , NP= 10 cm
ta có : mn^2 + mp^2=6^2+8^2=100
np^2=100
suy ra mp^2+mn^2=np^2
vậy tam giác mnp vuông tại M
kick mk nha
đề 1: vì tổng 3 góc trong 1 tam giác là 180*
mà tam giác abc cân tại a suy ra : góc b = góc c
góc b +góc c=180-80=100
vì góc b = góc c suy ra :
góc b = góc c = 50 *
1/ Ta có \(\widehat{B}+\widehat{C}=180^o-\widehat{A}\) (tổng 3 góc trong của tam giác)
và \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
=> \(2\widehat{B}=180^o-\widehat{A}\)
=> \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\)
=> \(\widehat{B}=\frac{180^o-80^o}{2}\)
=> \(\widehat{B}=\widehat{C}=\frac{100^o}{2}=50^o\)