Rút gọn
9x^2+3xy-2y^2/9x^2+9xy+2y^2
Thu gọn: (xy - 5x^2y^2 + xy^2 - xy^2) - (x^2y^2 + 3xy^2 - 9x^2y)
bn có hỏi bài này và mk đã trả lời r mà?
phân tích đa thức thành nhân tử
1/ \(6x^2y-9xy^2+3xy\)
2/ \(\left(4-x\right)^2-16\)
3/ \(x^3+9x^2-4x-36\)
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)
a, x^2-y^2-2y-1
b, 5x-10y-x^2+4y^2
c, x^2-4x+3
d, x^3-9x^2y + 9xy^2-3xy^2
e, x^4 +64
a,=x^2-[y-1]^2
=[x-y+1] [x+y-1]
b,=5[x-2y]-[x-2y].[x+2y]
=[x-2y].[5-x-2y]
Thu gọn: \(\left(xy-5x^2y^2+xy^2-xy^2\right)-\left(x^2y^2+3xy^2-9x^2y\right)\)
https://hoc24.vn/hoi-dap/question/593303.html
rút gọn biểu thức rồi tính giá trị
3(x-1)(x^2+x+1) +(x-1)^3-4x(x+1)(x-1) tại x =-2
(3xy-2)(9x^2y^2+6xy+4)-3xy(3xy+1)^2 tại x =-2010,y =-1/2010
rút gọn
(3x+y) ( 9x^2 -3xy +y^2) -(3x-y)(9x^2+3xy+y^2 )
Ta có:
\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left[\left(3x\right)^3+y^3\right]-\left[\left(3x\right)^3-y^3\right]\)
\(=\left(3x\right)^3+y^3-\left(3x\right)^3+y^3\)
\(=2y^3\)
1) phân tích đa thức thành nhân tử
\(x^2-3x-4\)
2)Rút gọn rồi tính giá trị của biểu thức
\(\left(9x^2y^2-6x^2y^3+15xy\right)\):(-3xy) tại \(x=1,y=2\)
1/
x2 - 3x - 4
= \(x^2-3x+\frac{9}{4}-\frac{9}{4}-4\)
\(=\left(x^2-3x+\frac{9}{4}\right)-\frac{25}{4}\)
\(=\left(x-\frac{3}{2}\right)^2-\left(\frac{5}{2}\right)^2\)
\(=\left(x-\frac{3}{2}-\frac{5}{2}\right)\left(x-\frac{3}{2}+\frac{5}{2}\right)\)
\(=\left(x-4\right)\left(x+1\right)\)
Bài 1 :
\(x^2-3x-4\)
\(=x^2+x-4x-4\)
\(=x\left(x+1\right)-4\left(x+1\right)\)
\(=\left(x+1\right)\left(x-4\right)\)
a)
x^2 -3x -4
=x^2 -2.x.1,5 + 1,5^2 -6,25
=(x+1,5)^2 -2,5^2
=(x -1,5+ 2,5).(x-1,5-2,5)
=(x+ 1).(x-4)
Rút gọn
a, (3x+2).(9x\(^2\)-6x+4)
b, (x-2y)\(^3\) -(x\(^2\)-2xy+y\(^2\))
a: \(\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
b: \(\left(x-2y\right)^3-\left(x^2-2xy+y^2\right)\)
\(=x^3-6x^2y+12xy^2-8y^3-x^2+2xy-y^2\)
\(xy-5x^2y^2+xy^2-xy^2-x^2y^2-3xy^2+9x^2y\)
\(xy-5x^2y^2+xy^2-xy^2-x^2y^2-3xy^2+9x^2y\)
=> \(-\left(5x^2y^2+x^2y^2\right)+\left(xy^2-xy^2-3xy^2\right)+xy+9x^2y\)
=> \(-6x^2y^2-3xy^2+xy+9x^2y\)