Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Miu
Xem chi tiết

Đề bài:Chứng minh: (n + 2)/13 và (n – 4)/13 không thể đồng thời là số nguyên

Ta có: (n + 2)/13 là số nguyên => n + 2 ⋮ 13 => n + 2 = 13k => n = 13k – 2 (k ∈ Z)

Ta có:  (n – 4)/13 = (13k – 2 – 4)/13 = (13k – 6)/13 = k – 6/13 không là số nguyên.

Suy ra (n + 2)/13 và (n – 4)/13 không thể đồng thời là số nguyên.

Học Tốt nha.

#Moon#

Khách vãng lai đã xóa
Vũ Văn Cường
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Hatsune Miku
Xem chi tiết
Đào Xuân Sơn
Xem chi tiết
Aries
Xem chi tiết
Nguyễn Anh Duy
2 tháng 11 2016 lúc 17:48

Giả sử:,

+) \(n\) chia \(3\)\(1\) thì \(n^2\) cũng chia \(3\)\(1\), khi đó \(n^2-1\) chia \(3\)\(0\) nên không là số nguyên tố.

+) \(n\) chia \(3\)\(2\) thì \(n^2\) cũng chia \(3\), khi đó \(n^2-1\) chia \(3\)\(00\) nên không là số nguyên tố
Vậy ta có đpcm :)

Ngô Văn Nam
Xem chi tiết
Trần Hùng Minh
11 tháng 12 2015 lúc 22:13

Mình thử n = 2 thì 2n - 1 = 2 . 2 - 1 = 3 (3 là số nguyên tố)

n = 2 thì 2n + 1 = 2 . 2 + 1 = 5 (5 là số nguyên tố)

Vậy đề bạn sai

 

Nuyễn Huy Tú
Xem chi tiết
Nguyễn Hoài Anh
6 tháng 11 2020 lúc 9:30

vì n không chia hết cho 3 => n^2 không chia hết cho 3 

xét 3 số tự nhiên liên tiếp n^2-1; n^2; n^2+1

vì n^2 không chia hết cho 3 => 1 trong 2 số n^2-1 và n^2 sẽ chia hết cho 3

=> 1 trong 2 số đó sẽ là hợp số 

vậy n^2-1 và n^2+1 không thể đồng thời là số nguyên tố

Khách vãng lai đã xóa
Đỗ Thục Quyên
12 tháng 2 lúc 5:43

Nguyễn Hoài Anh oi , n^2-1; N^2 và n^2+1 có phải ba số tự nhiên liên tiếp đâu ?

Đỗ Nguyễn Vân Anh
Xem chi tiết
Akai Haruma
27 tháng 11 2021 lúc 10:17

Lời giải:

Gọi $\text{B(2021)}$ là bội của $2021$

$2022^n-1=(2021+1)^n-1=\text{B(2021)}+1-1=\text{B(2021)}$

Mà $2021=43\times 47$ không phải số nguyên tố

$\Rightarrow 2022^n-1$ không là số nguyên tố 

$\Rightarrow 2022^n-1, 2022^n+1$ không thể đồng thời là số nguyên tố.