Cho đường tròn (O; R = 25). Khi đó dây cung lớn nhất của đường tròn đó bằng?
A. 12,5
B. 25
C. 50
D. 20
Cho đường tròn (O; R = 25). Khi đó dây cung lớn nhất của đường tròn đó bằng?
A. 12,5
B. 25
C. 50
D. 20
Chọn đáp án C
Trong đường tròn thì đường kính là dây lớn nhất của đường tròn đó
Vậy dây lớn nhất của đường tròn là 2R = 2.25 = 50
Cho đường tròn (O; R = 25). Khi đó dây cung lớn nhất của đường tròn đó bằng?
A. 12,5
B. 25
C. 50
D. 20
Đáp án C
Trong đường tròn thì đường kính là dây lớn nhất của đường tròn đó
Vậy dây lớn nhất của đường tròn là 50
Bài 1: Cho một đường tròn (O) dây AB = 48cm và cách tâm 7cm. Gọi I là trung điểm của AB, tia IO cắt đường tròn tại C. Tính khoảng cách từ O đến BC.
Bài 2: Cho một đường tròn (O) và một điểm P bên trong đường tròn. Nêu cách dựng dây cung AB đi qua P để PA = PB.
Bài 3: Cho đường tròn (O;5) và một dây cung AV dài 6cm. Gọi I là trung điểm của AB. Tia OI cắt cung AB tại M. Tính độ dài dây cung MA.
Bài 4: Cho đường tròn (O) và một điểm P bên trong đường tròn. Cmr trong tất cả dây đi qua P thì dây vuông góc với OP tại P là dây cung ngắn nhất.
Cho đường tròn ( O ; R ) và Bc là dây cung cố định ( BC khác 2R ). A là điểm chuyển động trên cung lớn BC . Xác định vị trí của điểm A để chu vi tam giác ABC lớn nhất .
Cho AB=r căn 3 là dây cung của đường tròn (O,r) số đo cung lớn AB?
Kẻ OH⊥AB tại H
Xét ΔOAB có OA=OB(=R)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOAB cân tại O(cmt)
mà OH là đường cao ứng với cạnh đáy AB(gt)
nên OH là đường trung tuyến và cũng là đường phân giác ứng với cạnh AB(Định lí tam giác cân)
hay H là trung điểm của AB
\(\Leftrightarrow AH=\dfrac{AB}{2}=\dfrac{R\sqrt{3}}{2}\)
Xét ΔOAH vuông tại H có
\(\sin\widehat{AOH}=\dfrac{AH}{AO}=\dfrac{R\cdot\dfrac{\sqrt{3}}{2}}{R}=\dfrac{\sqrt{3}}{2}\)
hay \(\widehat{AOH}=60^0\)
\(\Leftrightarrow\widehat{AOB}=2\cdot\widehat{AOH}=120^0\)
Số đo cung lớn AB là: \(360^0-120^0=240^0\)
Cho đường tròn (O;R), dây BC cố định, A là điểm tùy ý trên cung lớn BC; BM,CN là hai đường cao; Khi A chuyển động trên cung lớn BC của đường tròn (O) thì tâm I đường tròn ngoại tiếp tam giác AMN chuyển động trên đường nào.
giúp mình 2 bài này với. Mình cảm ơn nhiều ạ
bài 1: Cho đường tròn (O ; R) đường kính AB. Từ một điểm H nằm giữa O và A ta vẽ dây CD vuông góc với AB.Xác định vị trí của H để chu vi tam giác HOC lớn nhất. Khi đó tính diện tích của tam giác BCD.
Bài 2. Cho đường tròn (O ; 1). Lấy một điểm A cố định trên đường tròn. Vẽ tam giác MAB vuông
tại M, AB là một dây cung của đường tròn (O). Tìm giá trị lớn nhất của độ dài OM.
Vẽ đường tròn tâm O bán kính 2cm. Vẽ dây cung AB, khi nào thì dây cung AB có độ dài lớn nhất?
Nhanh nha
Mọi người giúp mình với ^.^
1/ Cho đ/tròn (O,R),dây BC cố định,A tùy ý trên cung lớn BC.BM,CN là 2 đ/cao của tam giác ABC. Khi A chuyển động trên cung lớn BC thì tâm I của đ/tròn ngoại tiếp tam giác AMN chạy trên đường nào?
2/ Cho đ/tròn (O,R),dây BC cố định,A di động trên cung lớn BC. Khi A di động trên cung lớn BC thì trực tâm H cảu tam giác ABC chạy trên đường nào?