Chọn đáp án C
Trong đường tròn thì đường kính là dây lớn nhất của đường tròn đó
Vậy dây lớn nhất của đường tròn là 2R = 2.25 = 50
Chọn đáp án C
Trong đường tròn thì đường kính là dây lớn nhất của đường tròn đó
Vậy dây lớn nhất của đường tròn là 2R = 2.25 = 50
Cho đường tròn (O; R = 25). Khi đó dây cung lớn nhất của đường tròn đó bằng?
A. 12,5
B. 25
C. 50
D. 20
Cho đường tròn (O; 25 cm). Khi đó độ dài dây lớn nhất của đường tròn bằng:
Cho đường tròn tâm O bán kính R .Dây AB của đường tròn đó chia đường tròn thành 2 cung ,trong đó cung lớn có số đo gấp 3 lần khung nhỏ .Tính độ dài AB theo R
Cho nửa đường tròn tâm O đường kính AB=2R ( R là một đọ dài cho trước).Gọi C,D là 2 điểm nằm trên nửa đường tròn đó sao cho C thuộc cung AD và COD=120. Gọi giao điểm của 2 dây AD và BC là E, giao điểm của các đường thẳng AC và BD là F
a, Chứng minh 4 điểm C,D,E,F cùng thuộc 1 đường tròn
b, Tính bán kính của đường tròn đi qua C,E,D,F nói trên theo R
c, Tìm giá trị lớn nhất của tam giác FAB theo R khi C,D thay đổi nhưng vẫn thỏa mãn gỉa thiết bài toán
cho hai đường tròn ( O ; R ) và ( O' ; R' ) tiếp xúc ngoài tại A ( R > R' ). vẽ dây AM của đường tròn ( O ) và dây AN của đường tròn ( O' ) sao cho AM vuông góc AN. gọi BC là 1 tiếp tuyến chung ngoài của hai đường tròn ( O ) và ( O' ) với B thuộc ( O ) và C thuộc ( O' )
a) CMR : 3 đường thẳng MN,BC và OO' đồng quy
b) xác định vị trí của M và N để tứ giác MNOO' có diện tích lớn nhất. tính giá trị lớn nhất đó
Câu 18 Cho đường tròn (O; R = 5cm) và dây cung AB = 8cm. Khi đó số đo cung nhỏ AB bằng:
a) 98*
b) 106*
c)90*
d)105*
giúp mình 2 bài này với. Mình cảm ơn nhiều ạ
bài 1: Cho đường tròn (O ; R) đường kính AB. Từ một điểm H nằm giữa O và A ta vẽ dây CD vuông góc với AB.Xác định vị trí của H để chu vi tam giác HOC lớn nhất. Khi đó tính diện tích của tam giác BCD.
Bài 2. Cho đường tròn (O ; 1). Lấy một điểm A cố định trên đường tròn. Vẽ tam giác MAB vuông
tại M, AB là một dây cung của đường tròn (O). Tìm giá trị lớn nhất của độ dài OM.
Cho nửa đường tròn (O;R) đường kính AB, EF là dây cung di động trên nửa đường tròn thuộc cung AF và EF=R . AF cắt AB tại H. AE cắt BF tại C. CH cắt AB tại I
a/ Tính góc CIF.
b/ CMR: AE.AC + BF.BC không đổi khi EF di động
c/ Tìm vị trí của EF để tứ giac ABFE có diện tích lớn nhất. Tính diện tích đó
Cho đường tròn (O; R) với dây cung BC cố định. Điểm A thuộc cung lớn BC. Đường phân giác của B A C ^ cắt đường tròn (O)tại D. Các tiếp tuyến của đường tròn (O; R) tại C và D cắt nhau tại E. Tịa CD cắt AB tại K, đường thẳng AD cắt CE tại I
a, Chứng minh BC song song DE
b, Chứng minh AKIC là tứ giác nội tiếp
c, Cho BC = R 3