Tìm x,y,z thỏa mãn : x+y-z=y+z-x=x+z-y=xyz
Tìm x, y, z thỏa mãn y+z-x/7 = z+x-y/11 = x+y-z/5 = xyz/3
Đặt \(k=\frac{y+z-x}{7}=\frac{z+x-y}{11}=\frac{x+y-z}{5}=\frac{xyz}{3}\)
Áp dụng dãy tỉ số bằng nhau:
\(k=\frac{y+z-x}{7}=\frac{z+x-y}{11}=\frac{y+z-x+z+x-y}{7+11}=\frac{2z}{18}=\frac{z}{9}\)
=> z=9k
Tương tự:
\(k=\frac{x+y-z}{5}=\frac{z+x-y}{11}=\frac{2x}{16}=\frac{x}{8}\)
=> x=8k
\(k=\frac{x+y-z}{5}=\frac{y+z-x}{7}=\frac{2y}{12}=\frac{y}{6}\)
=> y=6k
Ta có: \(\frac{xyz}{3}=k\Rightarrow\frac{6k.9k.8k}{3}=k\Leftrightarrow144k^3-k=0\Leftrightarrow k\left(144k^2-1\right)=0\)
+) TH1: k=0 ta có: x=y=z=0
+) Th2: \(144k^2-1=0\Leftrightarrow k^2=\frac{1}{144}=\frac{1}{12^2}\Leftrightarrow k=\pm\frac{1}{12}\)
Với \(k=\frac{1}{12}\).
Ta có: \(z=9k=\frac{9}{12}=\frac{3}{4};x=8k=\frac{8}{12}=\frac{2}{3};y=6k=\frac{6}{12}=\frac{1}{2}\)
Với k=-1/12 Em tự tính nhé
cho 3 số nguyên tố x,y,z thỏa mãn xyz=5(x+y+z). tìm x,y,z
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm GTLN của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm GTLN của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
cho x y z thỏa mãn x+y+z+căn xyz=4 cm căn x(4-y)(4-z) + căn y(4-x)(4-z) +căn z(4-x)(4-y) - căn xyz= 8
tìm x,y,z thỏa mãn x/2=y/3;y/5=z/4. XYZ=1800
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{10}=\dfrac{y}{15}\)(1)
Ta có: \(\dfrac{y}{5}=\dfrac{z}{4}\)
nên \(\dfrac{y}{15}=\dfrac{z}{12}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Đặt \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10k\\y=15k\\z=12k\end{matrix}\right.\)
Ta có: xyz=1800
\(\Leftrightarrow1800k^3=1800\)
\(\Leftrightarrow k^3=1\)
\(\Leftrightarrow k=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10\cdot1=10\\y=15\cdot1=15\\z=12\cdot1=12\end{matrix}\right.\)
cho x,y,z là các số dương thỏa mãn xyz>=x+y+z+2. tìm gtnn của x+y+z
Tìm các số nguyên dương x, y, z thỏa mãn: x+y+z=xyz
Ko mất tính tổng quát, giả sử \(0< x\le y\le z\)
\(\Leftrightarrow xyz=x+y+z\le3z\\ \Leftrightarrow xyz-3z\le0\\ \Leftrightarrow z\left(xy-3\right)\le0\\ \Leftrightarrow xy\le3\)
Mà \(0< x\le y\Leftrightarrow xy>0\Leftrightarrow xy\in\left\{1;2;3\right\}\)
Với \(xy=1\Leftrightarrow x=y=1\Leftrightarrow z+1+1=z\left(\text{vô nghiệm}\right)\)
Với \(xy=2\Leftrightarrow x=1;y=2\left(x\le y\right)\)
\(\Leftrightarrow3+z=2z\\ \Leftrightarrow z=3\)
Với \(xy=2\Leftrightarrow x=1;y=3\left(x\le y\right)\)
\(\Leftrightarrow1+3+z=3z\\ \Leftrightarrow2z=4\\ \Leftrightarrow z=2\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\) và các hoán vị