Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trường
Xem chi tiết
Tô Tuyết Lan
1 tháng 7 2019 lúc 15:54

ghse5uye5bvs

Nguyễn Linh Chi
3 tháng 7 2019 lúc 6:12

Đặt \(k=\frac{y+z-x}{7}=\frac{z+x-y}{11}=\frac{x+y-z}{5}=\frac{xyz}{3}\)

Áp dụng dãy tỉ số bằng nhau:

\(k=\frac{y+z-x}{7}=\frac{z+x-y}{11}=\frac{y+z-x+z+x-y}{7+11}=\frac{2z}{18}=\frac{z}{9}\)

=> z=9k

Tương tự:

\(k=\frac{x+y-z}{5}=\frac{z+x-y}{11}=\frac{2x}{16}=\frac{x}{8}\)

=> x=8k

\(k=\frac{x+y-z}{5}=\frac{y+z-x}{7}=\frac{2y}{12}=\frac{y}{6}\)

=> y=6k

Ta có: \(\frac{xyz}{3}=k\Rightarrow\frac{6k.9k.8k}{3}=k\Leftrightarrow144k^3-k=0\Leftrightarrow k\left(144k^2-1\right)=0\)

+) TH1: k=0 ta có: x=y=z=0

+) Th2: \(144k^2-1=0\Leftrightarrow k^2=\frac{1}{144}=\frac{1}{12^2}\Leftrightarrow k=\pm\frac{1}{12}\)

Với \(k=\frac{1}{12}\).

Ta có: \(z=9k=\frac{9}{12}=\frac{3}{4};x=8k=\frac{8}{12}=\frac{2}{3};y=6k=\frac{6}{12}=\frac{1}{2}\)

Với k=-1/12 Em tự tính nhé

ghdoes
Xem chi tiết
shunnokeshi
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Tạ Vũ Thiên Thiên
Xem chi tiết
Minhchau Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 20:50

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{x}{10}=\dfrac{y}{15}\)(1)

Ta có: \(\dfrac{y}{5}=\dfrac{z}{4}\)

nên \(\dfrac{y}{15}=\dfrac{z}{12}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

Đặt \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10k\\y=15k\\z=12k\end{matrix}\right.\)

Ta có: xyz=1800

\(\Leftrightarrow1800k^3=1800\)

\(\Leftrightarrow k^3=1\)

\(\Leftrightarrow k=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10\cdot1=10\\y=15\cdot1=15\\z=12\cdot1=12\end{matrix}\right.\)

quốc khánh hoàng
Xem chi tiết
OH-YEAH^^
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 18:23

Ko mất tính tổng quát, giả sử \(0< x\le y\le z\)

\(\Leftrightarrow xyz=x+y+z\le3z\\ \Leftrightarrow xyz-3z\le0\\ \Leftrightarrow z\left(xy-3\right)\le0\\ \Leftrightarrow xy\le3\)

Mà \(0< x\le y\Leftrightarrow xy>0\Leftrightarrow xy\in\left\{1;2;3\right\}\)

Với \(xy=1\Leftrightarrow x=y=1\Leftrightarrow z+1+1=z\left(\text{vô nghiệm}\right)\)

Với \(xy=2\Leftrightarrow x=1;y=2\left(x\le y\right)\)

\(\Leftrightarrow3+z=2z\\ \Leftrightarrow z=3\)

Với \(xy=2\Leftrightarrow x=1;y=3\left(x\le y\right)\)

\(\Leftrightarrow1+3+z=3z\\ \Leftrightarrow2z=4\\ \Leftrightarrow z=2\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\) và các hoán vị