cho a,b E R, a+b=2. Chứng minh rằng a^4+b^4>=2
Chứng Minh Rằng
a. cho biểu thức A= 3 + 3^2+ 3^3+ 3^4+...+ 3^100 và B= 3^100-1.Chứng Minh rằng : A<B
b. Cho A= 1+4+4^2+...+4^99, B= 4^100. Chứng Minh Rằng : A<B/3
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
\(A=1+4+4^2+...+4^{99}\)
\(\Leftrightarrow4A=4+4^2+4^3+...+4^{100}\)
\(\Leftrightarrow3A=4^{100}-1\)
\(\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)
hay A<B (đpcm)
cho a,b,c thuộc R, a2 +b2+c2=0. chứng minh rằng a+b+c-abc<4
Theo mình nghĩ là có a2 +b2+c2=0 => a=0; b=0; c=0. thay vào là dc. không biết đúng k, mình thấy khúc thay thì nó =0 luôn mà =D
Cho a, b, c \(\in R\), abc khác 0 Chứng minh rằng
\(\frac{a^4}{b^2+c^2}+\frac{b^4}{a^2+c^2}+\frac{c^4}{a^2+b^2}\ge\frac{a^2+b^2+c^2}{2}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky ta có:
\(\left(\frac{a^4}{b^2+c^2}+\frac{b^4}{c^2+a^2}+\frac{c^4}{a^2+b^2}\right)\left(b^2+c^2+c^2+a^2+a^2+b^2\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow\frac{a^4}{b^2+c^2}+\frac{b^4}{a^2+c^2}+\frac{c^4}{a^2+b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)
Ta có đpcm
Dấu bằng xảy ra khi \(\left|a\right|=\left|b\right|=\left|c\right|\)
cho năm số a,b,c,d,e khác 0 thỏa mãn điều kiện b2=a*c; c2=b*d; d2=c*e
Chứng minh rằng \(\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a}{e}\)
Thay b^4=(ac)^2 và tương tự với d^4
Từ đó đặt thừa số chung và sẽ ra kết quả!
1. Cho 3 số a,b,c, thỏa mãn abc khác 1; a2/b+c + b2/a+c + c2/b+a = 0
Chứng minh rằng: a/b+c + b/a+c + c/a+b = 1
2. Rút gọn biểu thức A = (a4 - 5a2 + 4)/(a4 - a2 + 4a - 4)
3. Cho m,n thuộc Z. Chứng minh rằng: mn(m2 - n2) chia hết cho 6
4. Tìm giá trị nhỏ nhất của A= (x - 2)(x - 4)(x2 - 6x + 10)
5. Gọi H là trực tâm của tam giác nhọn ABC. Chứng minh rằng: HA + HB + HC < 2/3(AB + AC + BC)
1)\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{b+a}=0\)
\(\Leftrightarrow a\cdot\left(\dfrac{a}{b+c}+1\right)+b\cdot\left(\dfrac{b}{a+c}+1\right)+c\left(\dfrac{c}{a+b}+1\right)-a-b-c=0\)
\(\Leftrightarrow a\cdot\dfrac{a+b+c}{b+c}+b\cdot\dfrac{a+b+c}{a+c}+c\cdot\dfrac{a+b+c}{a+b}-a-b-c=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\left(loai\right)\\\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\left(đpcm\right)\)
p/s:đề thiếu và dư đk
Ai biết giải thì giúp mình mấy bài toán này với, mình xin cảm ơn rất nhiều
\(A=\left(x-2\right)\left(x-4\right)\left(x^2-6x+10\right)\)
\(A=\left(x^2-6x+8\right)\left(x^2-6x+10\right)\)
Đặt \(x^2-6x+9=t\)
\(\Rightarrow A=\left(t-1\right)\left(t+1\right)\)
\(A=t^2-1\ge-1\)
\(\Rightarrow MINA=-1\Leftrightarrow x=3\)
Cho a, b, c, d, e khác 0 thỏa mãn điều kiện \(b^2=ac;c^2=bd;d^2=ce\). Chứng minh rằng : \(\dfrac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)=\(\dfrac{a}{e}\)
Lời giải:
Từ \(b^2=ac; c^2=bd; d^2=ce\)
\(\Rightarrow \frac{b}{a}=\frac{c}{b}; \frac{c}{b}=\frac{d}{c}; \frac{d}{c}=\frac{e}{d}\)
\(\Rightarrow \frac{b}{a}=\frac{c}{b}=\frac{d}{c}=\frac{e}{d}\).
Đặt \( \frac{b}{a}=\frac{c}{b}=\frac{d}{c}=\frac{e}{d}=k\Rightarrow b=ak; c=bk; d=ck; e=dk\)
Khi đó:
\(\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a^4+b^4+c^4+d^4}{a^4k^4+b^4k^4+c^4k^4+d^4k^4}=\frac{a^4+b^4+c^4+d^4}{k^4(a^4+b^4+c^4+d^4)}=\frac{1}{k^4}(1)\)
Và: \(bcde=ak.bk.ck.dk\)
\(\Rightarrow e=ak^4\Rightarrow \frac{a}{e}=\frac{1}{k^4}(2)\)
Từ \((1);(2)\Rightarrow \frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a}{e}\)
1/ cho tam giác ABC cân đỉnh A. đường cao BE;CF cắt nhau tại H. D là trung điểm của BC.
a/ chứng minh 4 điểm B;F;E;C cùng một đường tròn
b/ 4 điểmB;H;E;C có thuộc đường tròn không? vì sao?
c/ xác định tâm đường tròn đi qua 4 điểm A;F;B;C
d/ có thể khẳng định điểm B nằm ngoài đường tròn đi qua 4 điểm A;F;B;C không?
e/ chứng minh EF < BC
2/ cho ( O;R ); ( O';R') cắt nhau tại A;B (O;O' thuộc 2 nửa mặt phẳng bờ AB). trong cùng một nửa mặt phẳng bờ OO' vẽ hai bán kính OC; O'D sao cho OC//O'D. gọi E là điểm đối xứng của B qua OO'
a/ chứng minh AOBO' là hình thoi
b/ chứng minh AB;OO';CE đồng quy
c/ chứng minh A là trực tâm của tam giác BCD
a)Nối F với D : E với D ta có:
Xét tam giác FBC ta có
D là trung điểm BC(1)
Góc BFC=90 (2)
Từ (1)(2)=>FD là trung tuyến của tam giác FBC
=>BD=CD=DF(*)
Chứng minh tương tự tam giác EBC
=>DE=DC=DB(**)
Từ (*)(**)=>BD=CD=DF=DE=(1/2BC)
=>B;F;E;C thuộc đừng tròn
=>D là tâm của đường tròn
B) Do B;H;E nằm trên cùng 1 đừng thẳng => H ko thuộc đừng tròn
=>B;H;E;c ko thuộc đừng tròn
Đề thi chất lượng đầu năm: Cho năm số a, b, c, d, e khác 0 thỏa mãn điều kiện b2=ac; c2= bd; d2=ce
Chứng minh rằng: \(\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a}{e}\)
Cho a + b + c = 0 chứng minh rằng a^2 + b^2 + c^2 = 2( a^4 + b^4 + c^4 )
co a+b+c=0 =>b+c=-a
suy ra (b+c)2=(-a)2 hay b2+2bc+c2 =a2
hay b2+c2-a2 =-2bc
Suy ra (b2 + c2 - a2 )2 =( -2bc)2
<=> b4 +c4 +a4 +2b2c2 -2a2b2 -2a2c2 = 4b2c2
<=> a4+b4+c4 =2a2b2+2b2c2+2c2a2
<=> 2(a4+b4+c4) = a4+b4+c4+2a2b2+2b2c2+2c2a2
<=> a2+b2+c2 =2(a4+b4+c4) (dpcm)