Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hải
Xem chi tiết
Tran Le Khanh Linh
28 tháng 2 2020 lúc 19:31

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)

\(\Leftrightarrow A< B\)

Khách vãng lai đã xóa
Nguyễn Trọng Anh Văn
28 tháng 2 2020 lúc 19:31

a. tính A = 3+3^2+3^3+3^4+.....+3^100

3A=3^2+3^3+3^4+3^5+....+3^100

3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100

mà B=3^100-1 => A<B

Khách vãng lai đã xóa
Tran Le Khanh Linh
28 tháng 2 2020 lúc 19:34

\(A=1+4+4^2+...+4^{99}\)

\(\Leftrightarrow4A=4+4^2+4^3+...+4^{100}\)

\(\Leftrightarrow3A=4^{100}-1\)

\(\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)

hay A<B (đpcm)

Khách vãng lai đã xóa
Nguyễn bảo châm
Xem chi tiết
nhi trần
23 tháng 3 2015 lúc 22:19

Theo mình nghĩ là có a+b2+c2=0 => a=0; b=0; c=0. thay vào là dc. không biết đúng k, mình thấy khúc thay thì nó =0 luôn mà =D

Empty AA
Xem chi tiết
Akai Haruma
13 tháng 10 2017 lúc 2:22

Lời giải:

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(\frac{a^4}{b^2+c^2}+\frac{b^4}{c^2+a^2}+\frac{c^4}{a^2+b^2}\right)\left(b^2+c^2+c^2+a^2+a^2+b^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Leftrightarrow\frac{a^4}{b^2+c^2}+\frac{b^4}{a^2+c^2}+\frac{c^4}{a^2+b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)

Ta có đpcm

Dấu bằng xảy ra khi \(\left|a\right|=\left|b\right|=\left|c\right|\)

Dương Khánh Linh
Xem chi tiết
Lê Thị Hải Yến
11 tháng 4 2017 lúc 19:45

Thay b^4=(ac)^2 và tương tự với d^4

Từ đó đặt thừa số chung và sẽ ra kết quả!

Nguyễn Thị Thanh Nhàn
Xem chi tiết
Phạm Nguyễn Tất Đạt
29 tháng 3 2018 lúc 21:23

1)\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{b+a}=0\)

\(\Leftrightarrow a\cdot\left(\dfrac{a}{b+c}+1\right)+b\cdot\left(\dfrac{b}{a+c}+1\right)+c\left(\dfrac{c}{a+b}+1\right)-a-b-c=0\)

\(\Leftrightarrow a\cdot\dfrac{a+b+c}{b+c}+b\cdot\dfrac{a+b+c}{a+c}+c\cdot\dfrac{a+b+c}{a+b}-a-b-c=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\left(loai\right)\\\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\left(đpcm\right)\)

p/s:đề thiếu và dư đk

Nguyễn Thị Thanh Nhàn
29 tháng 3 2018 lúc 21:02

Ai biết giải thì giúp mình mấy bài toán này với, mình xin cảm ơn rất nhiều

Phạm Nguyễn Tất Đạt
29 tháng 3 2018 lúc 21:35

\(A=\left(x-2\right)\left(x-4\right)\left(x^2-6x+10\right)\)

\(A=\left(x^2-6x+8\right)\left(x^2-6x+10\right)\)

Đặt \(x^2-6x+9=t\)

\(\Rightarrow A=\left(t-1\right)\left(t+1\right)\)

\(A=t^2-1\ge-1\)

\(\Rightarrow MINA=-1\Leftrightarrow x=3\)

Yêu lớp 6B nhiều không c...
Xem chi tiết
Akai Haruma
4 tháng 9 2018 lúc 22:57

Lời giải:

Từ \(b^2=ac; c^2=bd; d^2=ce\)

\(\Rightarrow \frac{b}{a}=\frac{c}{b}; \frac{c}{b}=\frac{d}{c}; \frac{d}{c}=\frac{e}{d}\)

\(\Rightarrow \frac{b}{a}=\frac{c}{b}=\frac{d}{c}=\frac{e}{d}\).

Đặt \( \frac{b}{a}=\frac{c}{b}=\frac{d}{c}=\frac{e}{d}=k\Rightarrow b=ak; c=bk; d=ck; e=dk\)

Khi đó:

\(\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a^4+b^4+c^4+d^4}{a^4k^4+b^4k^4+c^4k^4+d^4k^4}=\frac{a^4+b^4+c^4+d^4}{k^4(a^4+b^4+c^4+d^4)}=\frac{1}{k^4}(1)\)

Và: \(bcde=ak.bk.ck.dk\)

\(\Rightarrow e=ak^4\Rightarrow \frac{a}{e}=\frac{1}{k^4}(2)\)

Từ \((1);(2)\Rightarrow \frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a}{e}\)

Đặng Anh Thư
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
26 tháng 9 2017 lúc 15:31

a)Nối F với D : E với D ta có:

Xét tam giác FBC ta có 

D là trung điểm BC(1)

Góc BFC=90 (2)

Từ (1)(2)=>FD là trung tuyến của tam giác FBC

=>BD=CD=DF(*)

Chứng minh tương tự tam giác EBC

=>DE=DC=DB(**)

Từ (*)(**)=>BD=CD=DF=DE=(1/2BC)

=>B;F;E;C thuộc đừng tròn

=>D là tâm của đường tròn

B) Do B;H;E nằm trên cùng 1 đừng thẳng => H ko thuộc đừng tròn 

=>B;H;E;c ko thuộc đừng tròn

Trần Minh Đức
Xem chi tiết
Lương Thanh Tùng
Xem chi tiết
Dương Anh
6 tháng 8 2017 lúc 20:56

co a+b+c=0 =>b+c=-a

suy ra (b+c)2=(-a)2  hay b2+2bc+c2 =a2

hay b2+c2-a2 =-2bc

Suy ra (b2 + c2 - a)2 =( -2bc)2

<=> b+c4 +a+2b2c2 -2a2b2 -2a2c2 = 4b2c2

<=> a4+b4+c4 =2a2b2+2b2c2+2c2a2

<=> 2(a4+b4+c4) = a4+b4+c4+2a2b2+2b2c2+2c2a2

<=> a2+b2+c2 =2(a4+b4+c4) (dpcm)