Tìm tất cả các số tự nhiên n sao cho n^2+3n+1 chia hết cho n+1
Tìm tất cả các số tự nhiên n sao cho n^2+3n+1 chia hết cho n-1
n2 +3 = (n+1)(n-1) + 4
(n+1)(n-1) chia hết cho n-1
=> n2 +3 chia hết cho n-1
=> 4 phải chia hết cho n-1
=> n-1 = Ư(4) = {1;2;4)
vậy n thuộc {2;3;5}
n2+3n+1
= n2-2n+1+5n-5+5
= (n-1)2+5(n-1)+5
Vì (n-1)2 chia hết cho n-1
5(n-1) chia hết cho n-1
=. 5 chia hết cho n-1
n-1 thuộc Ư(5)
bạn cứ lm tiếp là ra
Tìm số tự nhiên n sao cho:
1) 3n chia hết cho 2n-5
2) 4n+3 chia hết cho 2n+6
3) 2n+6 chia hết cho 3n+1
(Tích tất cả các bình luận đúng)
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5}
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5}
tìm tất cả các số tự nhiên n sao cho 3n +13 chia hết cho n
Vì : \(3n⋮n\Rightarrow13⋮n\Rightarrow n\in\left\{1;13\right\}\)
3n + 13 \(⋮\)n
=> 3n \(⋮\)n
=> 13 \(⋮\)n
=> n \(\in\) Ư (13) = {1; 13}
Vậy n \(\in\) {1; 13}
Chúc bạn học tốt!
b) Tìm tất cả các số tự nhiên n để 3n+13 chia hết cho n+1.
\(3n+13⋮n+1\)
\(\Leftrightarrow n+1\in\left\{2;5;10\right\}\)
hay \(n\in\left\{1;4;9\right\}\)
Tìm tất cả các số tự nhiên n để 3n + 13 chia hết cho n + 1
\(3n+13⋮n+1\)
\(3\left(n+1\right)+10⋮n+1\)
\(10⋮n+1\)
\(\Rightarrow n+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Tự lập bảng nha !
https://olm.vn/hoi-dap/detail/63079091964.html
Ta có: 3n + 13 chia hết cho n + 1
=> 3(n+1) + 10 chia hết cho n + 1
=> 10 chia hết cho n + 1
=> n+1 thuộc Ư(10) = {-10;-5;-2;-11;2;5.10}
=> n thuộc {-11;-6;-3;-2;0;1;4;9}
- Mà n là số tự nhiên => n thuộc {0;1;4;9}
Vậy:...
- Hok tốt ~
Tìm tất cả các giá trị số tự nhiên của n để 3n + 13 chia hết cho n + 1
ta có ; 3n+13 chia hết cho n+1
suy ra 3n+3+10chia het cho n+1
mà 3n+3 chia hết cho n+1
suy ra 10 chia hết cho n+1
suy ra n +1 thuộc ước của 10
suy ra n+1=10;5;2;1;-10;-5;-2;-1
vì n là số tự nhiện suy ra n= 9;4;1;0
ta có ; 3n+13 chia hết cho n+1
suy ra 3n+3+10chia het cho n+1
mà 3n+3 chia hết cho n+1
suy ra 10 chia hết cho n+1
suy ra n +1 thuộc ước của 10
suy ra n+1=10;5;2;1;-10;-5;-2;-1
vì n là số tự nhiện suy ra n= 9;4;1;0
- 3n + 13 = (3n + 3) +10 vì 3n + 3 chia hết n +1 nên chỉ cần 10 chia hết cho n+1 là được.
ta có 10 chia hết cho :( 0+1) , (1+1) ,(4+1) ,(9+1).
vậy các số tự nhiên n là : 0 ; 1; 4 ; 9.
tìm tất cả các số tự nhiên n để n+6 chia hết cho 3n-2
n+6 chia hết cho 3n-2
=>3(n+6) chia hết cho 3n-2
=>3n+18 chia hết cho 3n-2
=>[3n+18-(3n-2)] chia hết choa 3n-2
=>(3n+18-3n+2) chia hết cho 3n-2
=>20 chia hết cho 3n-2
=> 3n-2\(\in\left\{1;2;4;5;10;20\right\}\)
Lập bảng là ra
Dâu # là chia hết nhé :
Ta có :
n + 6 # 3n -2
=> 3(n + 6) # 3n - 2
=> 3n + 18 # 3n - 2
=> (3n - 2) + 20 # 3n-2
mà 3n - 2 # 3n - 2
=> 20 # 3n - 2
=> \(3n-2\in\left\{1;2;4;5;10;20\right\}\)
=> \(3n\in\left\{3;4;6;7;12;22\right\}\)(loại 3n = 4;7;22 vì các số đó ko chia hết cho 3)
=> \(n\in\left\{1;2;4\right\}\)
tìm tất cả các số tự nhiên n để n+6 chia hết cho 3n-2
n+6 chia hết cho 3n-2
=> 3n+18 chia hết cho 3n-2
=> 3n-2+20 chia hết cho 3n-2
Vì 3n-2 chia hết cho 3n-2
=> 20 chia hết cho 3n-2
=> 3n-2 thuộc Ư(20)
3n-2 | n |
1 | 1 |
2 | KTM |
4 | 3 |
5 | KTM |
10 | 4 |
20 | KTM |
KL: n thuộc {1; 3; 4}
a Tìm số nguyên n sao cho n 2 chia hết cho n 3b Tìm tất cả các số nguyên n biết 6n 1 chia hết cho 3n 1