(x^2 - 3x) +x-3 tại x=6
rút gọn rồi tính giá trị biểu thức sau
a) (3x-2)2+2x(3x-2)x(3x+2)+(3x+2)2tại x =\(\dfrac{-1}{3}\)
b) (x+y-7)2 -2x(x+y-7)x(y-6)+(y+6) tại x=101
c) 4x2 -20x+27 tại x = 52,5
a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)
\(=\left(3x-2+3x+2\right)^2\)
\(=36x^2\)(1)
Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:
\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)
b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left(x+y-7-y+6\right)^2\)
\(=\left(x-1\right)^2=100^2=10000\)
Câu 5: y= -3x^2 + 7x - 5 tại x= -2 Câu 6: y= (3x - 1)^2 tại x= 3 Câu 7: y= √x^2 + 4x tại x= 1/2
Câu 5
Thay x = -2 vào pt y = -3x^2 + 7x - 5
y = -12 - 14 - 5 = -26 - 5 = - 31
Câu 6 Thay x = 3 vào y = ( 3x - 1)^2
y = ( 9 - 1 )^2 = 64
Câu 7 : Thay x = 1/2 y = \(\sqrt{x^2+4x}\)
= \(\sqrt{\dfrac{1}{4}+2}=\sqrt{\dfrac{9}{4}}=\dfrac{3}{2}\)
Tính giá trị của các biểu thức :
1) E= (3x^2-4xy) - (-y^2+3xy) với 3x - 4y = 0
2) F= x^2.y^2 + 3x^3.y^3 - x^6.y^6 tại x=2020 và y= -1/2020
3) G= x^5 - 2012.x^4 + 2012.x^3 +2012.x-2012 tại x=2011
Rút gọn rồi tính giá trị của biểu thức
a)M=(x^2+3xy-3x^3)+(2y^3-xy+3x^3)-y^3 tại x=5 và y=4
b) N= x^2(x+y)-y(x^2-y^2) tại x=-6 y=8
c)P=x^2+1/2x+1/16 biết x= 3/4
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
Dùng hằng đẳng thức rút gọn và tính giá trị biểu thức:
1) (4x-1)2-2(4x-1)(3x-7)+7-3x)2 Tại x=44
2) (2x-5)2-2(2x-5)(3x-4)+(4-3x)2 Tại x=24
3) (x-4))2-2(x-4)(5-3x)+(5-3x)2 Tại x=16
4) ( 6x-5)2-2(5x-4)+(4-5x)2 Tại x=36
5) ( 7-3x)2+2(3x-7)(7+2x)+(2x+7)2 Tại x=15
6) (x-3)2+2(x-3)(3-2x)+(2x-3)2 Tại x=95
7) (3x-7)2+2(3x-7)(7-5x)+(5x-7)2 Tại x=50
8) (3x-5)2+2(3x-5)(5-2x)+(2x-5)2 Tại x=85
9) (5x-2)2+2(5x-2)(2-3x)+(3x-2)2 Tại x=25
10) ( 7x-5)2+2(7x-5)(5-6x)+(6x-5)2 Tại x=75
Chứng tỏ biểu thức không phụ thuộc x:
6) (3x-5)(8x+4)-4x(6x-7)
7) (4-3x)(3x+4)=9x2-15
8) (x-1)(x2+x+1)-(x+1)(x2-x+1)
9) (x-3)(x+3)-x(x+1)+x
10) (2x-5)(2x+5)-4x(x+5)+20x
giúp mik với
nhân các đa thức sau
a, (1/3x + 2 ) (3x - 6 )
b, (x^2 - 3x + 9 ) (x + 3 )
c, ( -2xy + 3 ) ( xy +1 )
d, x ( xy - 1 ) ( xy + 1 )
tính giá trị biểu thức
a, M = ( 3x + 2 ) ( 9x^2 - 6x + 4 ) tại x = 1/3
b, N = ( 5x - 2y ) ( 25x^2 + 10xy + 4y^2 ) tại x= 1/5 và y = 1/2
chứng minh giá trị của biểu thức sau ko phụ thuộc vào giá trị của biến
A= ( x + 2 ) ( 3x - 1 )- x ( 3x + 3 ) - 2x + 7
Bài 1:
a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)
\(=x^2-3x+6x-12\)
\(=x^2+3x-12\)
b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
c: \(\left(-2xy+3\right)\left(xy+1\right)\)
\(=-2x^2y^2-2xy+3xy+3\)
\(=-2x^2y^2+xy+3\)
d: \(x\left(xy-1\right)\left(xy+1\right)\)
\(=x\left(x^2y^2-1\right)\)
\(=x^3y^2-x\)
Bài 2:
a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
\(=27\cdot\dfrac{1}{27}+8=9\)
b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)
\(=125x^3-8y^3\)
\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)
=0
Bài 3:
Ta có: \(A=\left(x+2\right)\left(3x-1\right)-x\left(3x+3\right)-2x+7\)
\(=3x^2-x+6x-2-3x^2-9x-2x+7\)
=5
Tính giá trị của mỗi đa thức trong các trường hợp sau :
A)x^2+2xy-3x^3+2y^3+3x^3-y^3 tại x = 5 và y = 4
b)xy - x2^2y^2 + x^4y^4 - x^6y^6 + x^8y^8 tại x = -1 và y = -1
a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)
b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)
Tính đạo hàm:
a) y= \(\left(x^5+2x\right).\left(x^6-3\right).\left(3x^7+6x^2-2\right)\)
b) y= \(\left(x^4-\dfrac{2}{3x}\right)^5\)tại x=10
c) y= \(\dfrac{5x-2}{x+1}\) tại x=4
a. Làm gọn 1 chút xíu:
\(y=\left(x^{11}+2x^7-3x^5-6x\right)\left(3x^7+6x^2-2\right)\)
\(y'=\left(11x^{10}+14x^6-15x^4-6\right)\left(3x^7+6x^2-2\right)+\left(21x^6+12x\right)\left(x^{11}+2x^7-3x^5-6x\right)\)
b.
\(y'=5\left(x^4-\dfrac{2}{3x}\right)^4\left(4x^3+\dfrac{2}{3x^2}\right)\Rightarrow y'\left(10\right)=5\left(10^4-\dfrac{2}{30}\right)^4\left(4.10^3+\dfrac{2}{300}\right)=?\)
c.
\(y'=\dfrac{7}{\left(x+1\right)^2}\Rightarrow y'\left(4\right)=\dfrac{7}{25}\)
1.Rút gọn biểu thức
a. (3x-2)^2 +(3x+2)^2 + 2(9x^2) - 4 tại x= -1/3
b. (x + y-7)^2 - 2(x+y -7)(y-6) + (y-6)^2 tại x= 101
c.4x^2 - 20x +27 tại 52,5
Đề này đúng ra là tính nhé.
a. (3x-2)^2 +(3x+2)^2 + 2(9x^2) - 4 tại x= -1/3
Câu a sai đề nữa nè
Ta có:
\((3x-2)^2 + (3x+2)^2 + 2(9x^2-4) \)
\(= (9x^2 - 6x+4) + (9x^2+6x+4) + 2(9x^2 - 4)\)
\(= 2(9x^2+4) + 2(9x^2 -4) = 2.2.9x^2 \)
\(=36\cdot\dfrac{1}{9}=4\)
b. (x + y-7)^2 - 2(x+y -7)(y-6) + (y-6)^2 tại x= 101
Ta có:
\((x + y-7)^2 - 2(x+y -7)(y-6) + (y-6)^2\)
\(= [(x+y-7) - (y-6)]^2\)
\(= (x - 1)^2 \)
\(=100^2=10000\)
c.4x^2 - 20x +27 tại 52,5
Ta có:
\(4x^2 - 20x +27\)
\(=(2x)^2 -2.2x.5 + 25 + 2 \)
\(=(2x-5)^2 + 2 \)
\(=100^2+2=10002\)