Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huynh Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2021 lúc 18:29

a) ĐKXĐ: \(x\notin\left\{0;3;1\right\}\)

Sửa đề: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)

Ta có: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)

\(=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-6x+18}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-3}{x-1}\)

b) Để A nguyên thì \(-3⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;-2;4\right\}\)

Huynh Nguyên
Xem chi tiết
Huynh Nguyên
Xem chi tiết
Khinh Yên
1 tháng 7 2021 lúc 20:38

\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)

\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)

\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)

\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)

Luyện Thanh Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2020 lúc 18:27

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b) Ta có: \(A=\left(\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+2}{2x+2}\right)\cdot\dfrac{2x^2-2}{5}\)

\(=\left(\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\dfrac{6}{2\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+2\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\right)\cdot\dfrac{2x^2-2}{5}\)

\(=\left(\dfrac{x^2+2x+1+6-\left(x^2-x+2x-2\right)}{2\left(x+1\right)\left(x-1\right)}\right)\cdot\dfrac{2x^2-2}{5}\)

\(=\dfrac{x^2+2x+7-x^2-x+2}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{2\left(x-1\right)\left(x+1\right)}{5}\)

\(=\dfrac{x+9}{5}\)

nguyenquangtuan
Xem chi tiết
Chanhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 9 2021 lúc 20:51

Bài 2:

a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)

\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)

\(=2x^3+6x\)

b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)

\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)

\(=27x-55\)

tranthuylinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 14:30

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

b: Thay x=16 vào A, ta được:

\(A=\dfrac{3}{4+3}=\dfrac{3}{7}\)

ILoveMath
30 tháng 8 2021 lúc 14:42

c)\(A=\dfrac{3}{\sqrt{x}+3}=\dfrac{1}{3}\)

\(\Rightarrow\sqrt{x}+3=9\\ \Rightarrow\sqrt{x}=6\\ \Rightarrow x=36\)

d) \(A=\dfrac{3}{\sqrt{x}+3}\)

Vì \(3>0;\sqrt{x}+3>0\Rightarrow\dfrac{3}{\sqrt{x}+3}>0\)

e) \(2A\in Z\Rightarrow\dfrac{6}{\sqrt{x}+3}\in Z \Rightarrow6⋮x+3\\\Rightarrow\sqrt{x}+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\Rightarrow x=\left\{0;9\right\}\)

phạm anh dũng
Xem chi tiết
Thùyy Lynhh
Xem chi tiết
Trên con đường thành côn...
29 tháng 8 2021 lúc 7:20

undefinedundefined