Cho a,b,c,d khác 0 biết 2a/3b=3b/4c=4c/5d=5d/2a. Tính C=2a/3b+3b/4c+4c/5d+5d/2a
Cho a;b;c;d khác 0 biết 2a/3b=3b/4c=4c/5d .Tính C=2a/3b+3b/4c+4c/5d+5d/2a
Vì 2a/3b=3b/4c=4c/5d=5d/2a nên suy ra 2a=3b=4c=5d ( Theo công thức dãy tỉ số bằng nhau)
=> 2a/3b=3b/4c=4c/5d=5d/2a=1
=>C=1+1+1+1=4
Vậy C=4
sao bạn biết là 2a/3b=3b/4c=4c/5d=5d/3a=1
bai1
Cho a,b,c,d khác 0 .Biết 2a/3b=3b/4c=4c/5d=5d/2a .Tính C=2a/3b+3b/4c+4c/5d+5d/2a
Ta có
\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1.\) (Tính chất dãy tỷ số bằng nhau)
\(\Rightarrow\frac{2a}{3b}+\frac{3b}{4c}+\frac{4c}{5d}+\frac{5d}{2a}=4.1=4\)
Tính:A= 2a/3b + 3b/4c + 4c/5d + 5d/2a
biết 2a/3b = 3b/4c = 4c/5d = 5d/2a và a,b,c,d >0
2a/3b = 3b/4c = 4c/5d = 5d/2a (1)
ta có: 2a/3b=3b/4c=> 8ac=9b^2
4c/5d=5d/2a=> 8ac=25d^2
=> 9b^2=25d^2
=> b=5d/3
=> 3b=5d(*)
lại có: 3b/4c=4c/5d => 3b/4c=4c/3b (theo *)
=> 9b^2=16c^2
=> b=4c/3
=> 3b/4c=1
BT= 4*3b/4c (Vì các phân số = nhau)
=> BT=3b/c
Mà: 3b=4c ( Vì 3b/4c=1)
=> BT=4c/c=4
Vậy biểu thức trên = 4
1) tìm x17-(x-5)+2x-1=7-(10-13)
2)A) tìm a,b,c,d khác 0 biết 2a/3b = 3b/4c = 4c/5d = 5d/2a
B) tính C=2a/3b+3b/4c+4c/5d+5d/2a
cho a,b,c,d khác 0 biết \(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}\) Tính: \(C=\frac{2a}{3b}+\frac{3b}{4c}+\frac{4c}{5d}+\frac{5d}{2a}\)
c) C =2a/3b +3b/4c +4c/5d +5d/2a biết 2a/3b = 3b/4c = 4c/5d = 5d/2a.
Ta có: \(C=\dfrac{2a}{3b}+\dfrac{3b}{4c}+\dfrac{4c}{5d}+\dfrac{5d}{2a}\)
\(=\dfrac{2a}{3b}\cdot4=\dfrac{8a}{3b}\)
c) Vì \(\dfrac{2a}{3b}=\dfrac{3b}{4c}=\dfrac{4c}{5d}=\dfrac{5d}{2a}\) nên theo t/c của DTSBN ta có :
\(\Rightarrow\)\(C=\dfrac{2a}{3b}+\dfrac{3b}{4c}+\dfrac{4c}{5d}+\dfrac{5d}{2a}\) = \(\dfrac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
Tính giá trị của biểu thức C=2a/3b+3b/4c+4c+5d+5d/2a biết 2a/3b=3b/4c=4c+5d=5d/2a.
tính giá trị của biểu thức sau C=2a/3b+3b/4c+4c/5d+5d/2a biết 2a/3b=3b/4c=4c/5d=5d/2a
Đặt :
\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=m\)
=>\(\frac{2a}{3b}.\frac{3b}{4c}.\frac{4c}{5d}.\frac{5d}{2a}=m.m.m.m=1\)
=> m4 =1
=> m = 1
=> \(\frac{2a}{3b}=1;\frac{3b}{4c}=1;\frac{4c}{5d}=1;\frac{5d}{2a}=1\)
=>\(\frac{2a}{3b}+\frac{3b}{4c}+\frac{4c}{5d}+\frac{5d}{2a}=1+1+1+1=4\)
hay C =4
2a/3b = 3b/4c = 4c/5d = 5d/2a (1)
ta có: 2a/3b=3b/4c=> 8ac=9b^2
4c/5d=5d/2a=> 8ac=25d^2
=> 9b^2=25d^2
=> b=5d/3
=> 3b=5d(*)
lại có: 3b/4c=4c/5d => 3b/4c=4c/3b (theo *)
=> 9b^2=16c^2
=> b=4c/3
=> 3b/4c=1
BT= 4*3b/4c (Vì các phân số = nhau)
=> BT=3b/c
Mà: 3b=4c ( Vì 3b/4c=1)
=> BT=4c/c=4
Vậy biểu thức trên = 4
Theo t/c dãy tỉ số=nhau:
\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
\(=>2a=3b=4c=5d\)
\(=>C=1+1+1+1=4\)
Vậy C=4
Tính 2a/3b + 3b/4c + 4c/5d + 5d/2a biết 2a/3b=3b/4c=4c/5d=5d/2a