Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mỹ Tâm
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 11 2021 lúc 14:48

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

Vũ Thanh Huyền
Xem chi tiết
Dương Hoàng Minh Ánh
10 tháng 12 2021 lúc 20:04

= 154 . 235 + 154 . (-35)

= 154 . [ 235 + (-35)]

= 154 . 200

= 30800

Khách vãng lai đã xóa
Vũ Thị Lan Phương
10 tháng 12 2021 lúc 20:03

= 270 nha bạn

Chúc bạn hok tốt

T.I.C.K cho mình nha

Khách vãng lai đã xóa
Vũ Khôi Nguyên
Xem chi tiết
Hung Do Van
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 5 2021 lúc 13:03

Câu 1: 

const fi='dulieu.dat'

fo='thaythe.out'

var f1,f2:text;

a:array[1..100]of string;

n,d,i,vt:integer;

begin

assign(f1,fi); reset(f1);

assign(f2,fo); rewrite(f2);

n:=0;

while not eof(f1) do 

  begin

n:=n+1;

readln(f1,a[n]);

end;

for i:=1 to n do 

  begin

d:=length(a[i]);

vt:=pos('anh',a[i]);

while vt<>0 do 

  begin

delete(a[i],vt,3);

insert('em',a[i],vt);

vt:=pos('anh',a[i]);

end;

end;

for i:=1 to n do 

  writeln(f2,a[i]);

close(f1);

close(f2);

end.

Nguyễn Lê Phước Thịnh
4 tháng 5 2021 lúc 13:05

Câu 2: 

uses crt;

const fi='mang.inp'

fo='sapxep.out'

var f1,f2:text;

a:array[1..100]of integer;

i,n,tam,j:integer;

begin

clrscr;

assign(f1,fi); rewrite(f1);

assign(f2,fo); rewrite(f2);

write('Nhap n='); readln(n);

for i:=1 to n do 

  begin

write('A[',i,']='); readln(a[i]);

end;

for i:=1 to n do 

  write(f1,a[i]:4);

for i:=1 to n-1 do 

  for j:=i+1 to n do 

if a[i]>a[j] then

begin

tam:=a[i];

a[i]:=a[j];

a[j]:=tam;

end;

for i:=1 to n do 

  write(f2,a[i]:4);

close(f1);

close(f2);

end.

Phúc Tiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 23:31

a: Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

b: ΔOCE cân tại O

mà OK là đường trung tuyến

nên OK\(\perp\)CE tại K

Xét tứ giác OAMK có \(\widehat{OAM}+\widehat{OKM}=90^0+90^0=180^0\)

nên OAMK là tứ giác nội tiếp 
=>O,A,M,K cùng thuộc một đường tròn

c: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là tiếp tuyến

Do đó: MO là phân giác của \(\widehat{AMB}\)

MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=30^0\cdot2=60^0\)

ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=OM^2-OA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AM=R\sqrt{3}\)

Xét ΔAMB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

=>\(S_{MAB}=MA^2\cdot\dfrac{\sqrt{3}}{4}=\left(R\sqrt{3}\right)^2\cdot\dfrac{\sqrt{3}}{4}=\dfrac{3R^2\cdot\sqrt{3}}{4}\)

Khoa
Xem chi tiết
Nhi Phan
Xem chi tiết
proh
Xem chi tiết
Trần Yến Nhi
Xem chi tiết