Chương I - Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phúc Tiến

Mọi người giúp mình câu này vớiloading...

Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 23:31

a: Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

b: ΔOCE cân tại O

mà OK là đường trung tuyến

nên OK\(\perp\)CE tại K

Xét tứ giác OAMK có \(\widehat{OAM}+\widehat{OKM}=90^0+90^0=180^0\)

nên OAMK là tứ giác nội tiếp 
=>O,A,M,K cùng thuộc một đường tròn

c: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là tiếp tuyến

Do đó: MO là phân giác của \(\widehat{AMB}\)

MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=30^0\cdot2=60^0\)

ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=OM^2-OA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AM=R\sqrt{3}\)

Xét ΔAMB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

=>\(S_{MAB}=MA^2\cdot\dfrac{\sqrt{3}}{4}=\left(R\sqrt{3}\right)^2\cdot\dfrac{\sqrt{3}}{4}=\dfrac{3R^2\cdot\sqrt{3}}{4}\)


Các câu hỏi tương tự
Phúc Tiến
Xem chi tiết
MinhKhue Nguyen
Xem chi tiết
Phúc Tiến
Xem chi tiết
Min Gấu
Xem chi tiết
Thảo Vy
Xem chi tiết
Nguyễn Văn Hiển
Xem chi tiết
nguyễn văn an
Xem chi tiết
Hoàng kim anh
Xem chi tiết
Nguyễn Minh
Xem chi tiết