a: Xét (O) có
MA,MB là tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
b: ΔOCE cân tại O
mà OK là đường trung tuyến
nên OK\(\perp\)CE tại K
Xét tứ giác OAMK có \(\widehat{OAM}+\widehat{OKM}=90^0+90^0=180^0\)
nên OAMK là tứ giác nội tiếp
=>O,A,M,K cùng thuộc một đường tròn
c: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AMO}=30^0\)
Xét (O) có
MA,MB là tiếp tuyến
Do đó: MO là phân giác của \(\widehat{AMB}\)
MO là phân giác của góc AMB
=>\(\widehat{AMB}=2\cdot\widehat{AMO}=30^0\cdot2=60^0\)
ΔOAM vuông tại A
=>\(OA^2+AM^2=OM^2\)
=>\(AM^2=OM^2-OA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(AM=R\sqrt{3}\)
Xét ΔAMB có MA=MB và \(\widehat{AMB}=60^0\)
nên ΔMAB đều
=>\(S_{MAB}=MA^2\cdot\dfrac{\sqrt{3}}{4}=\left(R\sqrt{3}\right)^2\cdot\dfrac{\sqrt{3}}{4}=\dfrac{3R^2\cdot\sqrt{3}}{4}\)