3x/x -4+8x/x2- 16+x/x+4 Tìm Giá trị lớn nhất cho mình xin đáp án chi tiết ạ
Tính giá trị biểu thức
A= x4 - 17x3 + 17x2 - 17x + 20 tại x =16
Huhu m.ng giải chi tiết giúp mình được không ạ ? Tại mình có đáp án của bài này roii nhưng ngta làm tắt quá nên nhiều bước mình hongg hiểu .
M.ng có thể tham khảo đáp án ở dưới rồi diễn giải chi tiết ra giúp mình với nhâ !!!!
A= x4-17x3+17x2-17x+20 tại x =16
A= x4 -16x3 -x3 + 16x2 + x2 -16x - x + 16 + 4
A=x3 ( x - 16 ) - x2 (x-16) + x (x-16) - (x -16) +4
A = 4
Tại x = 16 => x +1 = 17
Thay vào A ta được:
A = x4 - (x+1)x3 + (x+1)x2 - (x+1)x + 20
A= x4 -(x4 + x3) + (x3 + x2) -(x2 + x) +20
A= x4 - x4 - x3 + x3 + x2 - x2 -x + 20
A= - x+20
Mà x = 16
=> A= -16 + 20 = 4
Vậy A= 4 khi x =16
Tìm giá trị lớn nhất của
A = 2x - x^2 + 4
B = 4x - x^2
C = 2 / 8x - 4x^2 - 5
giải chi tiết giùm mình nha mình like cho
\(\frac{2}{8x-4x^2-5}\)
Xét mẫu: \(8x-4x^2-5=-4x^2+8x-4-1=-\left(4x^2-8x+4\right)-1=-\left(2x-2\right)^2-1\)
Vì \(-\left(2x-2\right)^2\le0\Rightarrow-\left(2x-2\right)^2-1\le-1\)
Nên \(\frac{2}{8x-4x^2-5}\le\frac{2}{-1}\le-2\)
Vậy giá trị lớn nhất của \(\frac{2}{8x-4x^2-5}\)là-2
cho biểu thức P = ( x/x+1 - 1/1-x + 1/1-x2): x-2/x2-1
a, tìm điều kiện xác định và rút gọn
b, tìm tất cả các giá trị nguyên của x để biểu thức P nhân giá trị nguyên, với x>2, tìm giá trị nhỏ nhất của P
giúp mình với ạ làm chi tiết giúp mình
Tìm giá trị nhỏ nhất của
M= x^2 - 3x + 5
N= 2 / 8x - 4x^2 - 5
giải chi tiết giùm mình nha mình like cho
a/ \(M=x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+5\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy Min M = 11/4 khi x - 3/2 = 0 => x = 3/2
b/ \(N=-\left(4x^2-\frac{2}{8}x+5\right)\)
\(=-\left[\left(2x\right)^2-2.2x.\frac{1}{16}+\left(\frac{1}{16}\right)^2-\left(\frac{1}{16}\right)^2+5\right]\)
\(=-\left(2x-\frac{1}{16}\right)^2-\frac{1279}{256}\ge-\frac{1279}{256}\)
Vậy Min N = -1279/256 khi 2x - 1/16 = 0 => 2x = 1/16 => x = 1/32
Tìm x:
a) 36x3-4x=0
b) 3x(x-2)-2+x=0
c) (x3-x2)-4x2+8x-4=0
d) x2-6x-16=0
e) x4-6x2-7=0
(Mình cần gấp ạ)
a) Ta có: \(36x^3-4x=0\)
\(\Leftrightarrow4x\left(9x^2-1\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)
b) Ta có: \(3x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
d) Ta có: \(x^2-6x-16=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
e) Ta có: \(x^4-6x^2-7=0\)
\(\Leftrightarrow\left(x^2-7\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x\in\left\{\sqrt{7};-\sqrt{7}\right\}\)
\(\dfrac{x-1}{2}-\dfrac{x-2}{3}\le\dfrac{x-3}{4}\)
mn cho xin đáp án vs ạ mình nhìn đáp án của mình nó cứ sai sai ạ
=>3(x-1)-2(x-2)<=6/4(x-3)
=>3x-3-2x+4<=3/2x-9/2
=>-1/2x<=-9/2-1=-11/2
=>x>=11
Với giá trị nguyên nào của x thì biểu thức A= 14-x phần 4-x có giá trị lớn nhất không ??? Tìm giá trị đó ??? < giải chi tiết giùm mình nha > cảm mơn tất cả !!!
tìm m đa thức f(x)=\(3x^2+2x^2-7x-m+2\) chia hết cho g(x)=x+1
giải chi tiết giúp mình nhé đừng đưa mỗi đáp án thanks
Cho g(x) = 0
x + 1 = 0
x = -1
Để f(x) chia hết cho g(x) thì x = -1 cũng là nghiệm của f(x)
Hay f(1) = 0
3.1² + 2.1² - 7.1 - m + 2 = 0
-2 - m + 2 = 0
m = 0
Vậy m = 0 thì f(x) chia hết cho g(x)
Giải chi tiết của em đây :
F(x) = 3x2 + 2x2 - 7x - m + 2
F(x) \(⋮\) x + 1 \(\Leftrightarrow\) F(x) \(⋮\) x - (-1)
Theo bezout ta có : F(x) \(⋮\) x - (-1) \(\Leftrightarrow\) F(-1) = 0
\(\Leftrightarrow\) 3(-1)2 + 2(-1)2 - 7.(-1) - m + 2 = 0
3 + 2 + 7 - m + 2 =0
14 - m = 0
m = 14
Kết luận với m = 14 thì F(x) chia hết cho x + 1
Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức A=\(\frac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
Giúp mình với ạ!!! Mình cảm ơn rất nhiều ạ!!!
ĐK: \(x\ge0\)
+) Với x = 0 => A = 0
+) Với x khác 0
Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)
=> \(A\le\frac{4}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy max A = 4/3 tại x = 1
Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN