rút gọn phân thức x^2-9/x+3
câu 3 phân thức nghịch đảo của phân thức 2/x-4v(với x≠4)
câu 4 phân thức 2/ x-3 không có nghĩa khi
câu 5 rút gọn phân thức x-3/ x^2-9 ( với x≠ cộng trừ 3) ta được kết quả
Câu 4: Không có nghĩa khi x-3=0
=>x=3
Câu 5:
\(A=\dfrac{x-3}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x+3}\)
1. Rút gọn phân thức \(\dfrac{\left(x+y\right)^2}{x^2-y^2}=\) ta được kết quả là:
2. Rút gọn phân thức \(\dfrac{x^2-3x}{x^2-9}=\)
giúp mình với nhé mình đang cần gấp ạ
1. = \(\dfrac{x+y}{x-y}\)
2. = \(\dfrac{x}{x+3}\)
rút gọn phân thức\(\frac{x^3-x^2-6x}{x^9-4x}\)
rút gọn phân thức: x^2-3x phần x^2-6x+9
\(\dfrac{x^2-3x}{x^2-6x+9}=\dfrac{x\left(x-3\right)}{\left(x-3\right)^2}=\dfrac{x}{x-3}.\)
ĐKXĐ: \(x\ne3.\)
\(=\dfrac{\left(x-3\right)\cdot x}{\left(x-3\right)^2}=\dfrac{x}{x-3}\)
rút gọn phân thức
\(\dfrac{x-3}{x}-\dfrac{x}{x-3}-\dfrac{9}{x\left(x-3\right)}\)
\(=\dfrac{x^2-6x+9-x^2-9}{x\left(x-3\right)}=\dfrac{-6x}{x\left(x-3\right)}=\dfrac{6}{3-x}\)
Câu 2: Phân tích đa thức x^2-9 thành nhân tử được kết quả
Câu 3: Rút gọn biểu thức (x+y)^2-(x-y)^2ta được kết quả
\(2,=x^2-3^2=\left(x-3\right)\left(x+3\right)\\ 3,=\left(x+y-x+y\right)\left(x+y+x-y\right)\\ =2y\cdot2x=4xy\)
x^2-9=x^2-3^2=(x+3)(x-3)
(x+y)^2-(x-y)^2=(x+y+x-y)(x+y-x-y)=2x
x2-32=(x-3)(x+3)
(x+y)2-(x-y)2=(x+y-x+y)(x+y+x-y)=2y⋅2x=4xy
9, rút gọn phân thức
A = 2x + 6 trên x-3 x-2
B = x2 - 9 trên x2 - 6x + 9
Bài làm
\(A=\frac{2x+6}{\left(x-3\right)\left(x-2\right)}=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x-2\right)}\)
\(B=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)
\(A=\frac{2x+6}{\left(x-3\right)\left(x-2\right)}=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x-2\right)}\)
\(B=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)
Cho phân thức: A=3/x+3+1/x-3+18/x^2-9 a) Tìm điều kiện của x để giá trị của biểu thức A xác định. b) rút gọn A. c) tính giá trị của A khi x-1
\(A=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{x^2-9}\)
\(a,\) Điều kiện xác định: \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\x^2-9\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)
\(b,A=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{x^2-9}\)
\(=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}+\dfrac{18}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{4}{x-3}\)
\(c,x=1\Rightarrow A=\dfrac{4}{1-3}=-2\)
cho phân thức\(\dfrac{x^2+6x+9}{x^2-9}\)
a,tìm điều kiện xác định của x để phân thức xác định
b,rút gọn phân thức
c,tính giá trị của A tại x=2