Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thắng-gamer Devils
Xem chi tiết
lê thị phương oanh
3 tháng 2 2017 lúc 19:56

 ta có A =\(\frac{1}{5\cdot8}+\frac{1}{8\cdot12}+\frac{1}{12\cdot15}+...+\frac{1}{605\cdot608}\)

3A =\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{605\cdot608}\)

3A =\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{605}-\frac{1}{608}\)

3A=\(\frac{1}{5}-\frac{1}{608}\)

3A=\(\frac{603}{3040}\)A =\(\frac{201}{3040}\)

Hoàng Thị Bích Ngọc
3 tháng 2 2017 lúc 19:57

Đặt A=\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{605.608}\)

      3A=\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{605.608}\right)\)

      3A=\(3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{605}-\frac{1}{608}\right)\)

      3A=3.\(\left(\frac{1}{5}-\frac{1}{608}\right)\)

       A=\(\frac{201}{3040}\)

nghiem thi phuong uyen
Xem chi tiết
Mạnh Lê
14 tháng 7 2017 lúc 9:35

Đặt \(A=\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{602.605}\)

\(A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\)

\(A=\frac{1}{5}-\frac{1}{605}\)

\(A=\frac{24}{121}\)

Trần Thanh Phương
14 tháng 7 2017 lúc 9:32

\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{602\cdot605}\)

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\)

\(=\frac{1}{5}-\frac{1}{605}+0+...+0\)

\(=\frac{24}{121}\)

Nguyễn Tiến Dũng
14 tháng 7 2017 lúc 9:35

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\)

\(=\frac{1}{5}-\frac{1}{605}\)

tran ha phuong
Xem chi tiết
Khánh Ngọc
12 tháng 5 2019 lúc 20:33

Đề là cm S>1 nha bạn!

\(S=\frac{9}{2.5}+\frac{9}{5.8}+...+\frac{9}{29.32}\)

\(=3\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)

\(=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)

\(=3\left(\frac{1}{2}-\frac{1}{32}\right)\)

\(=3.\frac{15}{32}\)

\(=\frac{45}{32}>1\)

\(\Leftrightarrow S>1\)

Huỳnh Quang Sang
12 tháng 5 2019 lúc 20:36

\(S=\frac{9}{2\cdot5}+\frac{9}{5\cdot8}+\frac{9}{8\cdot11}+...+\frac{9}{29\cdot32}\)

Cách 1 : Vì hiệu hai thừa số đều là 3 = 5 - 2 = 8 - 5 = ... = 32 - 29 nên phân tích tử 9 = 3 . 3

Ta có : \(S=3\left[\frac{3}{2\cdot5}+\frac{3}{7\cdot9}+...+\frac{3}{29\cdot32}\right]=3\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{29}-\frac{1}{32}\right]\)

\(=3\left[\frac{1}{2}-\frac{1}{32}\right]=3\left[\frac{16}{32}-\frac{1}{32}\right]=3\cdot\frac{15}{32}=\frac{45}{32}\)

Mà \(\frac{45}{32}>1\)=> S không thể bé hơn 1

Cách 2 : Nhận xét : \(\frac{9}{2\cdot5}=\frac{3}{2}-\frac{3}{5};\frac{9}{5\cdot8}=\frac{3}{5}-\frac{3}{8};...\)

Vậy ta có : \(S=\frac{9}{2\cdot5}+\frac{9}{5\cdot8}+\frac{9}{8\cdot11}+...+\frac{9}{29\cdot32}=\frac{3}{2}-\frac{3}{5}+\frac{3}{5}-\frac{3}{8}+...+\frac{3}{29}-\frac{3}{32}\)

\(=\frac{3}{2}-\frac{3}{32}=\frac{3\cdot16}{32}-\frac{3}{32}=\frac{48}{32}-\frac{3}{32}=\frac{45}{32}\)

Tự so sánh , mà S đâu bé hơn 1 ???

0147258369
Xem chi tiết
qwerty
Xem chi tiết
Nobi Nobita
28 tháng 6 2016 lúc 16:10

\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{2006.2009}\)

\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)

\(F=\frac{1}{5}-\frac{1}{2009}\)

\(F=\frac{2004}{10045}\)

ncjocsnoev
28 tháng 6 2016 lúc 16:05

\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{1}{11.14}+...+\frac{3}{2006.2009}\)


\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)

\(F=\frac{1}{5}-\frac{1}{2009}\)

\(F=0\)

Chipu khánh phương
28 tháng 6 2016 lúc 16:09

F = 1/5 - 1/8 + 1/8 - 1/11 +,,,+1/2006 - 1/2009
F = 1/5 - 1/2009
F = 2008/10044
Chúc bạn học tốt 

Nguyen tuan cuong
Xem chi tiết
Huỳnh Quang Sang
30 tháng 8 2020 lúc 15:09

\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}\)

\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)

Khách vãng lai đã xóa
.
30 tháng 8 2020 lúc 15:11

Tính

\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)

\(=\frac{1}{2}-\frac{1}{17}=\frac{17}{34}-\frac{2}{34}=\frac{15}{34}\)

Khách vãng lai đã xóa
Trần Hồ Hoàng Vũ
30 tháng 8 2020 lúc 15:12

Ta có: Biểu thức trên sẽ =

\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)1/17 (nó bị lỗi nên k viết đc T_T)

\(\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)

Chúc bạn học tốt!~

Khách vãng lai đã xóa
Khuất Đăng Mạnh
Xem chi tiết
Lightning Farron
30 tháng 1 2017 lúc 14:50

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)

Nguyễn Huy Tú
30 tháng 1 2017 lúc 15:28

b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)

\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)

\(=\frac{5}{4}.\frac{4n}{12n+9}\)

\(=\frac{5n}{12n+9}\)

( sai đề )

doanthihongngoc
Xem chi tiết
Huỳnh Bá Nhật Minh
14 tháng 6 2018 lúc 15:34

\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\)\(\frac{3}{11\cdot14}+...+\)\(\frac{3}{602\cdot605}\)

\(=\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{602\cdot605}\)

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{602}\)\(-\frac{1}{605}\)

\(=\frac{1}{5}-\frac{1}{605}\)

\(=\frac{121}{605}-\frac{1}{605}\)

\(=\frac{120}{605}=\frac{24}{121}\)

Phùng Minh Quân
14 tháng 6 2018 lúc 15:35

Bài này dùng công thức nhé 

\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{602.605}\)

\(=\)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{602}-\frac{1}{605}\)

\(=\)\(\frac{1}{5}-\frac{1}{605}\)

\(=\)\(\frac{24}{121}\)

Chúc bạn học tốt ~ 

ggbnbnbnbn
Xem chi tiết
soyeon_Tiểu bàng giải
7 tháng 8 2016 lúc 9:29

\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{97.100}\)

\(S=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{97.100}\right)\)

\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}.\frac{49}{100}=\frac{49}{300}\)

Dương Lam Hàng
7 tháng 8 2016 lúc 9:33

Ta có: \(S=\frac{1}{2.5}+\frac{1}{5.8}+....+\frac{1}{97.100}.\)

\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{97.100}\)

\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{100}\)

\(\Rightarrow3S=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(\Rightarrow S=\frac{49}{100}:3=\frac{49}{300}\)

Vậy \(S=\frac{49}{300}\)

CHÚC BẠN HỌC TỐT

Lucy Heartfilia
7 tháng 8 2016 lúc 9:33

\(S=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{97\cdot100}\)

\(S=3\cdot\frac{1}{3}\cdot\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{97\cdot100}\right)\)

\(S=\frac{1}{3}\cdot\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{97\cdot100}\right)\)

\(S=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}\cdot\left(\frac{50}{100}-\frac{1}{100}\right)\)

\(S=\frac{1}{3}\cdot\frac{49}{100}\)

\(S=\frac{49}{300}\)