Cho C1=\(\frac{5}{5\cdot8\cdot11}+\frac{5}{8\cdot11\cdot140}+...+\frac{5}{302\cdot3053\cdot308}\)
chung minh C1 < 1/48
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}...+\frac{1}{605\cdot608}\)
ta có A =\(\frac{1}{5\cdot8}+\frac{1}{8\cdot12}+\frac{1}{12\cdot15}+...+\frac{1}{605\cdot608}\)
3A =\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{605\cdot608}\)
3A =\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{605}-\frac{1}{608}\)
3A=\(\frac{1}{5}-\frac{1}{608}\)
3A=\(\frac{603}{3040}\)A =\(\frac{201}{3040}\)
Đặt A=\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{605.608}\)
3A=\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{605.608}\right)\)
3A=\(3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{605}-\frac{1}{608}\right)\)
3A=3.\(\left(\frac{1}{5}-\frac{1}{608}\right)\)
A=\(\frac{201}{3040}\)
\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...............+\frac{3}{602\cdot605}\)
Đặt \(A=\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{602.605}\)
\(A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\)
\(A=\frac{1}{5}-\frac{1}{605}\)
\(A=\frac{24}{121}\)
\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{602\cdot605}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\)
\(=\frac{1}{5}-\frac{1}{605}+0+...+0\)
\(=\frac{24}{121}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\)
\(=\frac{1}{5}-\frac{1}{605}\)
Cho S = \(\frac{9}{2\cdot5}+\frac{9}{5\cdot8}+\frac{9}{8\cdot11}+....+\frac{9}{29\cdot32}\). CM : S>1
Đề là cm S>1 nha bạn!
\(S=\frac{9}{2.5}+\frac{9}{5.8}+...+\frac{9}{29.32}\)
\(=3\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(=3.\frac{15}{32}\)
\(=\frac{45}{32}>1\)
\(\Leftrightarrow S>1\)
\(S=\frac{9}{2\cdot5}+\frac{9}{5\cdot8}+\frac{9}{8\cdot11}+...+\frac{9}{29\cdot32}\)
Cách 1 : Vì hiệu hai thừa số đều là 3 = 5 - 2 = 8 - 5 = ... = 32 - 29 nên phân tích tử 9 = 3 . 3
Ta có : \(S=3\left[\frac{3}{2\cdot5}+\frac{3}{7\cdot9}+...+\frac{3}{29\cdot32}\right]=3\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{29}-\frac{1}{32}\right]\)
\(=3\left[\frac{1}{2}-\frac{1}{32}\right]=3\left[\frac{16}{32}-\frac{1}{32}\right]=3\cdot\frac{15}{32}=\frac{45}{32}\)
Mà \(\frac{45}{32}>1\)=> S không thể bé hơn 1
Cách 2 : Nhận xét : \(\frac{9}{2\cdot5}=\frac{3}{2}-\frac{3}{5};\frac{9}{5\cdot8}=\frac{3}{5}-\frac{3}{8};...\)
Vậy ta có : \(S=\frac{9}{2\cdot5}+\frac{9}{5\cdot8}+\frac{9}{8\cdot11}+...+\frac{9}{29\cdot32}=\frac{3}{2}-\frac{3}{5}+\frac{3}{5}-\frac{3}{8}+...+\frac{3}{29}-\frac{3}{32}\)
\(=\frac{3}{2}-\frac{3}{32}=\frac{3\cdot16}{32}-\frac{3}{32}=\frac{48}{32}-\frac{3}{32}=\frac{45}{32}\)
Tự so sánh , mà S đâu bé hơn 1 ???
\(\sqrt[2]{4\cdot9\frac{8}{8}+\frac{48\cdot11+5}{1\cdot\frac{814}{5+\frac{6145}{1\cdot\frac{821}{614}}}}}2548-\frac{8452}{14\cdot\frac{58}{96\cdot\frac{41}{\frac{24}{1\cdot\frac{975545}{1421+\frac{84874}{\frac{1+2+3+4+5+6+7+8+9\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9}{2\cdot\frac{2}{1}}}}}}}}\)
\(F=\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{2006\cdot2009}\)
\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{2006.2009}\)
\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(F=\frac{1}{5}-\frac{1}{2009}\)
\(F=\frac{2004}{10045}\)
\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{1}{11.14}+...+\frac{3}{2006.2009}\)
\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(F=\frac{1}{5}-\frac{1}{2009}\)
\(F=0\)
F = 1/5 - 1/8 + 1/8 - 1/11 +,,,+1/2006 - 1/2009
F = 1/5 - 1/2009
F = 2008/10044
Chúc bạn học tốt
\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}\)
\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)
Tính
\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{17}{34}-\frac{2}{34}=\frac{15}{34}\)
Ta có: Biểu thức trên sẽ =
\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)1/17 (nó bị lỗi nên k viết đc T_T)
= \(\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)
Chúc bạn học tốt!~
CMR:Với mọi số tự nhiên n \(\ne\)0 ta đều có:
a.\(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{\left(3n-1\right)\cdot\left(3n+2\right)}=\frac{n}{6n+4}\)
b.\(\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+\frac{5}{11\cdot15}+...+\frac{5}{\left(4n-1\right)\cdot\left(4n+3\right)}=\frac{5n}{4n+3}\)
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)
b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)
\(=\frac{5}{4}.\frac{4n}{12n+9}\)
\(=\frac{5n}{12n+9}\)
( sai đề )
tính hợp lí
\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot4}+.....+\frac{3}{602\cdot605}\)
\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\)\(\frac{3}{11\cdot14}+...+\)\(\frac{3}{602\cdot605}\)
\(=\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{602\cdot605}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{602}\)\(-\frac{1}{605}\)
\(=\frac{1}{5}-\frac{1}{605}\)
\(=\frac{121}{605}-\frac{1}{605}\)
\(=\frac{120}{605}=\frac{24}{121}\)
Bài này dùng công thức nhé
\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{602.605}\)
\(=\)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{602}-\frac{1}{605}\)
\(=\)\(\frac{1}{5}-\frac{1}{605}\)
\(=\)\(\frac{24}{121}\)
Chúc bạn học tốt ~
S= \(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+......+\frac{1}{97\cdot100}\)
\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{97.100}\)
\(S=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{97.100}\right)\)
\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}.\frac{49}{100}=\frac{49}{300}\)
Ta có: \(S=\frac{1}{2.5}+\frac{1}{5.8}+....+\frac{1}{97.100}.\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{97.100}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\Rightarrow S=\frac{49}{100}:3=\frac{49}{300}\)
Vậy \(S=\frac{49}{300}\)
CHÚC BẠN HỌC TỐT
\(S=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{97\cdot100}\)
\(S=3\cdot\frac{1}{3}\cdot\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{97\cdot100}\right)\)
\(S=\frac{1}{3}\cdot\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{97\cdot100}\right)\)
\(S=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\cdot\left(\frac{50}{100}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\cdot\frac{49}{100}\)
\(S=\frac{49}{300}\)