Cho 2x^2 +5y^2+4xy-6y+3=0.Hãy tính B=2021*(x+y)^4+2022*(x+2)^6
Cho 2x² + 5y² + 4xy - 6y + 3 = 0. Hãy tính B = 2021(x+y)³ - 2022(x+2)³
Cho các số x y thỏa mãn x^2 + 5y^2 + 2x - 6y - 4xy + 2 = 0. Tính giá trị biểu thức S = x^2020 + (y-2)^2021
cho x và y thỏa mãn điều kiện x^2-2xy+6y^2-12x+2y+41=0.tính giá trị của P=2021.(10-x-2y)^2021-8(6y-x)^2022
Lời giải:
$x^2-2xy+6y^2-12x+2y+41=0$
$\Leftrightarrow (x^2-2xy+y^2)+5y^2-12x+2y+41=0$
$\Leftrightarrow (x-y)^2-12(x-y)+36+5y^2-10y+5=0$
$\Leftrightarrow (x-y-6)^2+5(y-1)^2=0$
Vì $(x-y-6)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y$
Do đó để tổng trên bằng $0$ thì bản thân mỗi số trên bằng $0$
$\Rightarrow x-y-6=y-1=0$
$\Rightarrow y=1; x=7$
$\Rightarrow P=2021(10-7-2)^{2021}-8(6-7)^{2022}$
$=2021-8=2013$
CMR: f(x,y)=\(x^2+5y^2-4xy+2x-6y+3>0\)
\(f\left(x,y\right)=\left(x^2+4y^2-4xy\right)+\left(2x-4y\right)+1+\left(y^2-2y+1\right)+1\)
\(f\left(x,y\right)=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-1\right)^2+1\)
\(f\left(x,y\right)=\left(x-2y+1\right)^2+\left(y-1\right)^2+1\)
\(\left\{{}\begin{matrix}\left(x-2y+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)=> f(x;y) >=1 >0 => dpcm
Cho 2x2 + 5y2 + 4xy - 6y + 3 = 0.
Tính giá trị biểu thức: M = 2014(x + y)3 + 2015(x + 2)4 .
GIÚP MÌNH VỚI! MÌNH ĐANG CẦN GẤP!
CMR: f(x,y)=\(x^2+5y^2-4xy+2x-6y+3>0\)
\(f\left(x,y\right)=x^2+4y^2+1-4xy+2x-4y+y^2-2y+1+1\)
\(=\left(x-2y+1\right)^2+\left(y-1\right)^2+1\ge1>0\)
\(\Rightarrowđpcm\)
Cho x^ 2+5y^2 -4xy-6y+9=0 . Tính giá trị của A= 𝑥+𝑦 / x-y
\(x^2+5y^2-4xy-6y+9=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
\(\Rightarrow A=...\)
Tìm x,y thỏa mãn x^2 +5y^2 -4x -4xy +6y +5 = 0. Tính P=(x-3)^2023 + (y-2)^2023 +(x+y-5)^2023
Ta có:
\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)
nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)
Thay \(x=4;y=1\) vào \(P\), ta được:
\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)
\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)
\(=1-1=0\)
Vậy \(P=0\) khi \(x=4;y=1\).
Câu 1 : Cho biểu thức \(A=\left(\dfrac{2+x}{2-x}\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)
1.Hãy rút gọn A
2.Tìm x để A > 0
Câu 2:
1.Phân tích đa thức thành nhân tử
\(a,x^2+9xy+8y^2-8y-x\)
b, \(x^3+5x-6\)
Câu 3:Tìm x,y,z biết \(x^2+y^2+z^2=xy+yz+zx\) và \(x^{2021}+y^{2021}+z^{2021}=3^{2022}\)
Câu 4:Tìm Min
A=\(x^2+8y^2-4xy+6x-16y+2030\)
\(B=\dfrac{27-12}{x^2-9}\)
M=\(2x^2+5y^2+4xy-12x-24x+2021\)
Câu 2
1, a, \(x^2+9xy+8y^2-8y-x=x^2+xy+8xy+8y^2-\left(8y+x\right)\)
\(=\left(x+y\right)\left(8y+x\right)-\left(8y+x\right)=\left(8y+x\right)\left(x+y-1\right)\)
b, \(x^3+5x-6=x^3-x^2+x^2-x+6x-6\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x^2+x+6\right)\)
Câu 2:
b) \(x^3+5x-6=x^3+x^2+6x-x^2-x-6\) \(=x\left(x^2+x+6\right)-\left(x^2+x+6\right)\) \(=\left(x-1\right)\left(x^2+x+6\right)\)
Câu 1 giữa 2 phân thức đầu tiên là dấu gì hả em?