cho x^2=a^2+b^2+ab b a+b=c.CM:2 x^4=a^4+b^4+c^4
cho x^2=a^2+b^2+ab va a+b=c.CM:2 x^4=a^4+b^4+c^4
1.Cho a,b,c là độ dài ba cạnh của một tam giác:
CMR: \(a^2+b^2+c^2\leq2(ab+bc+ac)\)
2.CMR: \((x-1)(x-2)(x-3)(x-4)\geq-1\)
3.CMR:\(a^4+b^4+c^4\geq abc( a+b+c)\)
1. Không có dấu "=" em nhé.
Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác thì:
$a< b+c\Rightarrow a^2< ab+ac$
$b< a+c\Rightarrow b^2< ba+bc$
$c< a+b\Rightarrow c^2< ca+cb$
$\Rightarrow a^2+b^2+c^2< 2(ab+bc+ac)$
Ta có đpcm.
2.
$(x-1)(x-2)(x-3)(x-4)$
$=(x-1)(x-4)(x-2)(x-3)$
$=(x^2-5x+4)(x^2-5x+6)$
$=(x^2-5x+4)(x^2-5x+4+2)$
$=(x^2-5x+4)^2+2(x^2-5x+4)$
$=(x^2-5x+4)^2+2(x^2-5x+4)+1-1$
$=(x^2-5x+5)^2-1\geq 0-1=-1$ do $(x^2-5x+5)^2\geq 0$ với mọi $x\in\mathbb{R}$
Vậy ta có đpcm.
3.
Áp dụng BĐT Cô-si:
$a^4+b^4\geq 2a^2b^2$
$b^4+c^4\geq 2b^2c^2$
$c^4+a^4\geq 2c^2a^2$
Cộng theo vế và thu gọn thì:
$a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2(*)$
Tiếp tục áp dụng BĐT Cô-si:
$a^2b^2+b^2c^2\geq 2|ab^2c|\geq 2ab^2c$
$b^2c^2+c^2a^2\geq 2abc^2$
$a^2b^2+c^2a^2\geq 2a^2bc$
Cộng theo vế và thu gọn:
$\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)(**)$
Từ $(*); (**)\Rightarrow a^4+b^4+c^4\geq abc(a+b+c)$
Dấu "=" xảy ra khi $a=b=c$
Bài 1 Rút gọn biểu thức
\(\frac{\left(x+\frac{1}{x^4}\right)-\left(x^4+\frac{1}{x^4}\right)-2}{\left(x+\frac{1}{x}\right)^4+x^2+\frac{1}{x^2}}.\frac{x^4+1999x^2+1}{2x^2}\)
Bài 2: Cho a,b,c thoả mãn
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^2}{c^2+ca+a^2}=1006\)
tính giá trị biểu thức
M=\(\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
cho \(x^2=a^2+b^2+ab\) và a+b=c chứng minh \(2x^4=a^4+b^4+c^4\)
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+b^4+a^2b^2+2a^2b^2+2ab^3+2a^3b\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4ab^3+4a^3b\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+2b^2.2ab+2.2ab.a^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+b^2+2ab\right)^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)
Cho \(x^2=a^2+b^2+ab\) và c=a+b
chứng minh rằng \(2x^4=a^4+b^4+c^4\)
Ta có :
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+3a^2b^2+2a^3b+2ab^3+b^4\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a^2+2ab+b^2\right)^2\right]\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)
Bài 1: Chứng minh rằng :
cho ab=2;a+b=-3 tính giá trị biểu thức a^3 + b^3
Bài 2: rút gọn:
a, 2(x-y)×(x+y)+(x+y)^2(x-y)^2
b, x(x+4)×(x-4)-(x^2+1)×(x^2-1)
c, (a+b-c)-(a-c)^2-2ab+2ab
Bài 2:
b: Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^3-4x-x^4+1\)
\(=-x^4+x^3-4x+1\)
c: Ta có: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ab\)
\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)\)
\(=b\left(2a+b-2c\right)\)
\(=2ab+b^2-2bc\)
\(a + b = -3\)
\(ab = 2\)
Từ \(ab = 2\), ta có thể giải ra được \(a = \frac{2}{b}\) hoặc \(b = \frac{2}{a}\).
Đặt \(a = \frac{2}{b}\) vào \(a + b = -3\) ta được:
\(\frac{2}{b} + b = -3\)
\(2 + b^2 = -3b\)
\(b^2 + 3b + 2 = 0\)
\((b + 1)(b + 2) = 0\)
\(b = -1\) hoặc \(b = -2\).
Khi \(b = -1\), ta có \(a = -2\). Khi \(b = -2\), ta có \(a = -1\).
Vậy giá trị của biểu thức \(A = a^3 + b^3\) khi \(a = -2, b = -1\) hoặc khi \(a = -1, b = -2\).
1. cho A=x^2(x+4) tìm gtnn của a KHI x>=2
2. Cho x>=4 X+y>=6
img gtnn của B=x^2 +y^2
3. a,b>0 a+b=1 max c=ab (a^2+b^2)
Cau 1: Ta có:
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7
=(x-3)^2 +2(y-1)^2 +7 >+ 7
=> minA= 7 <=> x=3 và y=1
Bài 4 : Cho x+y=3 ,xy=2 (x>y). Tính : x2-y2 , x3-y3, x4-y4, x5-y5
Bài 5 : Cho a+b+c=0, a2 + b2 + c2 =1
Tính a) ab+bc+ca
b) a4+b4+c4
Bài 1: CMR
1, a2+b2+c2 >= ab+bc+ca
2, a4+b4+c4+d4 >= 4abcd
3, a3+b3+abc >= ab(a+b+c) với a,b,c>0
4, 8(a4+b4) >= (a+b)4
5, (a2+b2) >= ab(a+b)2
6, a2+b2+c2+d2 >= a(b+c+d)
7, x4-4x+5 > 0
8, x4-x+1/2 > 0
9, a2+b2+c2+3/4 >= a+b+c
10, a4+b4+2 >= 4ab
\(\frac{ }{ }\)