Tìm xϵZ biết:
x-{[-x+(x+3)]} - [(x+3)-(x-2)]=0
tìm x biết:x+2 căn 2 x^2+2x^3=0
Ta có: \(x+2\sqrt{2}.x^2+2x^3=0\)
\(\Leftrightarrow x\left(1+2\sqrt{2}.x+2x^2\right)=0\)
\(\Leftrightarrow x\left[1^2+2.x\sqrt{2}.1+\left(x\sqrt{2}\right)^2\right]=0\)
\(\Leftrightarrow x\left(1+x\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+x\sqrt{2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{\sqrt{2}}\end{cases}}\)
Vậy\(x\in\left\{0;\frac{-1}{\sqrt{2}}\right\}\)
\(x+2\sqrt{2}x^2+2x^3=0\)
\(x\left(1+2\sqrt{2}x+2x^2\right)=0\)
\(x\left(2\sqrt{2}x+1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2\sqrt{2}x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2x\sqrt{2}}\end{cases}}\)
Thôi nhầm chỗ HĐT rồi , bạn làm giống bạn Lê Tài Bảo Châu nhé ! NHầm
tìm xϵz , biết :
a) (x - 2 ) . ( x + 4 ) = 0
b) (x - 2 ) . ( x + 15 ) = 0
c ) ( 7 - x ) . ( x + 19 ) = 0
d) -5 < x < 1
e) |x| < 3
g ) ( x - 3 ) . ( x - 5 ) < 0
b. (x-2)(x+15)=0
x-2=0 hoặc x+15=0
x=2 hoặc x=-15
a. (x-2)(x+4)=0
x-2=0 hoặc x+4=0
x=2 hoặc x=-4
g. (x-3)(x-5)<0
\(\begin{cases}x-3>0\\x-5< 0\end{cases}\)=>\(\begin{cases}x>3\\x< 5\end{cases}\)=> 3<x<5 Vậy x= 4
a.
\(\left(x-2\right)\times\left(x+4\right)=0\)
\(x-2=0\)\(x=2\)
\(x+4=0\)\(x=-4\)
Vậy x = 2 hoặc x = - 4.
b.
\(\left(x-2\right)\times\left(x+15\right)=0\)
\(x-2=0\)\(x=2\)
\(x+15=0\)\(x=-15\)
Vậy x = 2 hoặc x = - 15.
c.
\(\left(7-x\right)\times\left(x+19\right)=0\)
\(7-x=0\)\(x=7\)
\(x+19=0\)\(x=-19\)
Vậy x = 7 hoặc x = -19.
d.
\(-5< x< 1\)
\(x\in\left\{-4;-3;-2;-1;0\right\}\)
e.
\(\left|x\right|< 3\)
\(\left|x\right|\in\left\{0;1;2\right\}\)
\(x\in\left\{-2;-1;0;1;2\right\}\)
Chúc bạn học tốt
e. /x/<3 => -3<x<3
Vậy x=-2;-1;0;1;2
d. -5<x<1
=> x= -4;-3;-2;-1;0
c. (7-x)(x+19)=0
7-x=0 hoặc x+19=0
x=7 hoặc x=-19
tìm x biết:x^3-x=0
\(x^3-x=0\Rightarrow x\left(x^2-1\right)=0\)
TH1: \(x=0\)
TH2: \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=\sqrt{1}\)hoặc \(x=-\sqrt{1}\)
Tìm x biết:x-20-3x2+x3=0
<=>\(\left(x^3-4x^2\right)+\left(x^2-4x\right)+\left(5x-20\right)=0\)
<=>\(x^2\left(x-4\right)+x\left(x-4\right)+5\left(x-4\right)=0\)
<=>\(\left(x^2+x+5\right)\left(x-4\right)=0\)
Vì \(x^2+x+5>0\)=>x-4=0
<=>x=4
Tìm x, biết:x-6:2-(48-24x2:6-3)=0 . Kết quả là x =..........
violympic nhé
a)A={nϵN/n(n+1)≤15}
b)B={3k-1/kϵZ,-5≤k≤3}
c)C={xϵZ//x/<10}
d)D={xϵQ/x2-3x+1=0}
e)E={xϵZ/2x3-5x2+2x=0}
f)F={xϵN/x<20 và x chia hết cho 3}
\(a,A=\left\{0;1;2;3;4\right\}\\ b,B=\left\{-16;-13;-10;-7;-4;-1;2;5;8\right\}\\ c,C=\left\{-9;-8;-7;...;7;8;9\right\}\\ d,x^2-3x+1=0\\ \Delta=9-4=5\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{5}}{2}\\x=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\\ \Leftrightarrow D=\left\{\dfrac{3-\sqrt{5}}{2};\dfrac{3+\sqrt{5}}{2}\right\}\)
\(e,2x^3-5x^2+2x=0\\ \Leftrightarrow x\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow E=\left\{0;2\right\}\\ f,F=\left\{0;3;6;9;12;15;18\right\}\)
Cho: \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
a, Rút gọn P.
b, Tìm xϵZ để PϵZ.
c, Tìm GTLN của P.
a) \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)
\(=\dfrac{3x+3\sqrt{x}-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{3x+3\sqrt{x}-9+\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b) \(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}=\dfrac{3\sqrt{x}+6+2}{\sqrt{x}+2}=3+\dfrac{2}{\sqrt{x}+2}\)
Để \(P\in Z\Rightarrow2⋮\sqrt{x}+2\Rightarrow\sqrt{x}+2=2\left(\sqrt{x}+2\ge2\right)\)
\(\Rightarrow x=0\)
c) Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\Rightarrow3+\dfrac{2}{\sqrt{x}+2}\le4\)
\(\Rightarrow P_{max}=4\) khi \(x=0\)
tìm x biết:x-1/x+2=x-2/x+3
x³ - x² - x = 1/3
<=> x³ = x² + x + 1/3
<=> 3x³ = 3(x² + x + 1/3)
<=> 3x³ = 3x² + 3x + 1
<=> 3x³ + x³ = x³ + 3x² + 3x + 1
<=> 4x³ = (x + 1)³
<=> ³√(4x³) = ³√(x + 1)³
<=> ³√4.x = x + 1
<=> ³√4.x - x = 1
<=> x(³√4 - 1) = 1
<=> x = 1/(³√4 - 1)
Ta có \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x+2\right)\left(x-2\right)\)
\(\Rightarrow x^2+2x-3=x^2-4\)
\(\Rightarrow x^2-x^2+2x=-4+3\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)
Tìm X, biết:
X + (X + 1) + (X + 2) + (X + 3) + ...+ (X + 19) = 950
=>20x+190=950
=>20x=760
hay x=38
`20x+190=950`
`20x=760`
`x= 760: 20`
`x= 38`
20 x X = 950 - (1 + 2 + 3 + 4 + 5 + ... + 19)
20 x X = 950 - 190
20 x X = 760
X = 760 : 20
X = 38