Bài 1: Phân tích đa thức sau thànBài 1: Phân tích đa thức sau thành nhân tử a) x 2 – xy + x – y b) x 2 + 5x + 6 c) 2xy - x 2 - y 2 +16h nhân tử a) x 2 – xy + x – y b) x 2 + 5x + 6 c) 2xy - x 2 - y 2 +16
a) \(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b) \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+3\right)\left(x+2\right)\)
\(2xy-x^2-y^2+16\)
\(=16-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
Bài 1: a) Tính 3x. (x-1)
b) Phân tích các đa thức sau thành nhân tử x3 - 2x2 + x
c) Tính giá trị biểu thức x2 - 2xy - 9z2 + y2 . Tại x = 6; y = -4; z = 30
a) 3x . ( x-1 ) = 3x2 - 3x
b) x3- 2x2+x = x2.( x-1 ) - x.( x-1 ) = (x-1).(x-1).x
= (x-1)2.x
c) x2- 2xy-9z2+y2
= (x2-2xy+y2 )-(3z)2
= (x-y)2-(3z)2
= ( x-y-3z).(x-y+3z)
thay vào ta có ( 6+4-90 ).(6+4+90 )=-80.100=-8000
Tính giá trị của biểu thức sau biết x^3-x=6 A= x^6-2x^4+x^3+x^2-x
Phân tích thành nhân tử a(b^2+c^2+bc)+b(c^2+a^2+ac)+c(a^2+b^2+ab)
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
1/ Cho a,b,c đối 1 khác nhau thỏa mãn điều kiện (a + b + c)^2 = a^2 + b^2 + c^2 (^ là mũ)
Rút gọn biểu thức: P= (a^2)/(a^2+2bc) + (b^2)/(b^2+2ac)+(c^2)/(c^2+2ab)
2/ Phân tích đa thức thành nhân tử: (x + 1)^4 + (x^2 + x +1)^2
3/ Phân tích đa thức thành nhân tử: ab(a - b) + bc(b - c) + ca(c - a)
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)
\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)
\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)
\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
mình làm vội, có chỗ nào sai bạn thông cảm nha
Chứng tỏ rằng nếu phương trình a x 2 + b x + c = 0 có nghiệm là x 1 v à x 2 thì tam thức a x 2 + b x + c phân tích được thành nhân tử như sau:
a x 2 + b x + c = a ( x - x 1 ) ( x - x 2 )
Áp dụng : phân tích đa thức thành nhân tử.
a ) 2 x 2 - 5 x + 3 ; b ) 3 x 2 + 8 x + 2
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
Kết quả phân tích đa thức x2 + 2xy + y2 – 9x – 9y thành nhân tử là :
A.( x + y + 3) ( x + y – 3) (x + y )
B.( x + y – 9) (x + y )
C. ( x + y – 3) (x + y )
D. ( x – y – 9) (x – y )
Phân tích đa thức sau thành nhân tử : x2 -x-y2 -y, ta được kết quả là: A. (x+y)(x-y-1) B. (x-y)(x+y+1) C.(x+y)(x+y-1) D.(x-y)(x+y-1)
Phân tích đa thức sau thành nhân tử : x2 -4x-y2 +4 ta được kết quả là:
A .(x+2-y)(x+2+y)
B. (x-y+2)(x+y-2)
C. (x-2-y)(x-2+y)
D.(x-y-2)(x-y+2)
Đa thức 25 – a2 + 2ab + b2 + được phân tích thành:
A. (5 + a – b)(5 – a – b)
B. (5 + a + b)(5 – a – b)
C. (5 + a + b)(5 – a + b)
D. (5 + a – b)(5 – a + b)
phân tích biểu thức sau thành nhân tử: T= ab(a+b)+bc(b+c)+ca(c+a)+2abc
\(T=a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+abc+abc\)
\(T=a^2b+ab^2+abc+b^2c+bc^2+abc+c^2a+a^2c\)
\(T=ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+c\right)\)
\(T=\left(a+b+c\right)\left(b\left(a+c\right)\right)+ac\left(a+c\right)\)
\(T=\left(a+c\right)\left(b\left(a+b+c\right)+ac\right)\)
Phân tích đa thức sau thành nhân tử a) x^2 - 3x b) 10x.(x - y) - 8y.(x-y) c) x^2 - 9
a) \(x^2-3x=x\left(x-3\right)\)
b) \(10x\left(x-y\right)-8y\left(x-y\right)=2\left(x-y\right)\left(5x-4y\right)\)
c) \(x^2-9=\left(x-3\right)\left(x+3\right)\)
a: \(x^2-3x=\left(x-3\right)\cdot x\)
c: \(x^2-9=\left(x-3\right)\left(x+3\right)\)