Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Vu
Xem chi tiết
nthv_.
20 tháng 11 2021 lúc 8:01

Đúng hết mà?

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 11 2021 lúc 7:50

\(a,=\dfrac{1}{2}\left[\left(x^2+y^2\right)^2-4x^2y^2\right]\\ =\dfrac{1}{2}\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\dfrac{1}{2}\left(x-y\right)^2\left(x+y\right)^2\\ b,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ c,=\dfrac{1}{2}\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)=\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)

Nguyễn phạm bảo lâm
Xem chi tiết
Hoàng Huy
Xem chi tiết
Nguyễn Huy Tú
18 tháng 7 2021 lúc 8:53

a, \(\dfrac{x^2}{4}-xy+y^2=\left(\dfrac{x}{2}\right)^2-xy+y^2=\left(\dfrac{x}{2}\right)^2-2.\dfrac{x}{2}.y+y^2\)

\(=\left(\dfrac{x^2}{2}-y\right)^2\)

b, \(x^2+x+\dfrac{1}{4}=x^2+\dfrac{1}{2}.2.x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)

c, \(x^2+2\sqrt{3}x+3=x^2+2\sqrt{3}x+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)

d, \(4x^2-1=\left(2x-1\right)\left(2x+1\right)\)

 

Yeutoanhoc
18 tháng 7 2021 lúc 8:53

`x^2/4-2*x/2*y+y^2`

`=(x/2-y)^2`

`x^2+x+1/4`

`=x^2+2*x*1/2+(1/2)^2`

`=(x+1/2)^2`

`x^2+2sqrt3x+3`

`=x+2xsqrt3+sqrt3^2`

`=(x+sqrt3)^2`

`4x^2-1`

`=(2x)^2-1`

`=(2x-1)(2x+1)`

Mai Ngọc Hà
Xem chi tiết
Akai Haruma
18 tháng 12 2023 lúc 19:03

Bài 1:

a. $2x^3+3x^2-2x=2x(x^2+3x-2)=2x[(x^2-2x)+(x-2)]$

$=2x[x(x-2)+(x-2)]=2x(x-2)(x+1)$

b.

$(x+1)(x+2)(x+3)(x+4)-24$

$=[(x+1)(x+4)][(x+2)(x+3)]-24$

$=(x^2+5x+4)(x^2+5x+6)-24$

$=a(a+2)-24$ (đặt $x^2+5x+4=a$)

$=a^2+2a-24=(a^2-4a)+(6a-24)$

$=a(a-4)+6(a-4)=(a-4)(a+6)=(x^2+5x)(x^2+5x+10)$

$=x(x+5)(x^2+5x+10)$

Akai Haruma
18 tháng 12 2023 lúc 19:06

Bài 2:

a. ĐKXĐ: $x\neq 3; 4$

\(A=\frac{2x+1-(x+3)(x-3)+(2x-1)(x-4)}{(x-3)(x-4)}\\ =\frac{2x+1-(x^2-9)+(2x^2-9x+4)}{(x-3)(x-4)}\\ =\frac{x^2-7x+14}{(x-3)(x-4)}\)

b. $x^2+20=9x$

$\Leftrightarrow x^2-9x+20=0$

$\Leftrightarrow (x-4)(x-5)=0$

$\Rightarrow x=5$ (do $x\neq 4$)

Khi đó: $A=\frac{5^2-7.5+14}{(5-4)(5-3)}=2$

Akai Haruma
18 tháng 12 2023 lúc 19:08

Bài 3:

$(2x^2-7x^2:13x:2):(2x-1)=(2x^2-\frac{7}{26}x):(2x-1)$

$=[x(2x-1)+\frac{19}{52}(2x-1)+\frac{19}{52}]:(2x-1)$

$=[(2x-1)(x+\frac{19}{52})+\frac{19}{52}]: (2x-1)$

$\Rightarrow$ thương là $x+\frac{19}{52}$ và thương là $\frac{19}{52}$

Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 21:51

\(a,=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\\ b,=\dfrac{1}{3}x\left(y+3xz+3z\right)\\ c,=2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)

\(d,=x^2\left(\dfrac{2}{5}+5x+y\right)\\ e,=\dfrac{1}{2}\left[\left(x^2+y^2\right)^2-4x^2y^2\right]\\ =\dfrac{1}{2}\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\dfrac{1}{2}\left(x-y\right)^2\left(x+y\right)^2\\ f,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ g,=\dfrac{1}{2}\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)=\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)