cho a,b,c là 3 cạnh của 1 tam giác
CMR a^2 + b^2 + c^2 < 2ab + 2bc + 2ac
cho a,b,c là độ dài ba cạnh của tam giác chứng minh rằng :
\(\dfrac{a^2+2bc}{b^2+c^2}+\dfrac{b^2+2ac}{c^2+a^2}+\dfrac{c^2+2ab}{a^2+b^2}>3\)
mọi người giúp mình với
Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)
BĐT đã cho tương đương:
\(\dfrac{a^2+2bc}{b^2+c^2}-1+\dfrac{b^2+2ac}{a^2+c^2}-1+\dfrac{c^2+2ab}{a^2+b^2}-1>0\)
\(\Leftrightarrow\dfrac{a^2-\left(b^2-2bc+c^2\right)}{b^2+c^2}+\dfrac{b^2-\left(a^2-2ac+c^2\right)}{a^2+c^2}+\dfrac{c^2-\left(a^2-2ab+b^2\right)}{a^2+b^2}>0\)
\(\Leftrightarrow\dfrac{a^2-\left(b-c\right)^2}{b^2+c^2}+\dfrac{b^2-\left(a-c\right)^2}{a^2+c^2}+\dfrac{c^2-\left(a-b\right)^2}{a^2+b^2}>0\)
\(\Leftrightarrow\dfrac{\left(a+c-b\right)\left(a+b-c\right)}{b^2+c^2}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)}{a^2+c^2}+\dfrac{\left(b+c-a\right)\left(a+c-b\right)}{a^2+b^2}>0\) (luôn đúng)
Vậy BĐT đã cho đúng
cho a, b, c là độ dài các cạnh của tam giác. CM: \(a^2+b^2+c^2< 2ab+2ac+2bc\)
giải:
vì a, b, c là độ dài 3 cạnh của tam giác, nên ta có các BĐT: \(a-b< c;a-c< b;b-c< a\)
ta có: \(a-c< b\Rightarrow a^2-2ac+c^2< b^2\Leftrightarrow a^2+c^2-b^2< 2ac\) (1)
tương tự, ta có: \(a-b< c\Rightarrow a^2+b^2-c^2< 2ab\) (2)
\(b-c< a\Rightarrow b^2+c^2-a^2< 2bc\) (3)
cộng vế theo vế các BĐT (1), (2) và (3), ta được:
\(2a^2+2b^2+2c^2-a^2-b^2-c^2< 2ab+2ac+2bc\)
hay \(a^2+b^2+c^2< 2ab+2ac+2bc\) (đpcm)
Cho a,b,c là 3 cạnh tam giác CMR
\(\frac{a^2+2bc}{b^2+c^2}+\frac{b^2+2ac}{a^2+c^2}+\frac{c^2+2ab}{b^2+a^2}>3\)
cho biểu thức M=(a^2+b^2-c^2)/2ab + (a^2+c^2-b^2)/2ac +(b^2+c^2-a^2)/2bc
cmr nếu a,b,c lá độ dài 3 cạnh của tam giác thì M>1
Cho \(M=\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}\)
Chứng minh rằng
a) Nếu a, b, c là độ dài 3 cạnh của một tam giác thì M>1
b) Nếu M=1 thì hai trong ba phân thức đã cho của M=1, phân thức còn lại bằng -1
tham khảo: Câu hỏi của Nguyễn Thùy Trang
https://olm.vn/hoi-dap/detail/240354680477.html
chứng minh\(\frac{a\cdot\left(b+c\right)}{a^2+2bc}+\frac{b\cdot\left(a+c\right)}{b^2+2ac}+\frac{c\cdot\left(a+b\right)}{c^2+2ab}< =2\)2 với a,b,c là độ dài 3 cạnh tam giác
BĐT cần CM tương đương:
\(3-VT\ge1\)
\(\Leftrightarrow\frac{a^2+2bc-a\left(b+c\right)}{a^2+2bc}+...\ge1\) (1)
\(VT\left(1\right)=\frac{\left[a^2+2bc-a\left(b+c\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]}+...\)
\(\ge\frac{\left[a^2+2bc-a\left(b+c\right)+b^2+2ca-b\left(c+a\right)+c^2+2ab-c\left(a+b\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\)
\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\) (2)
Ta cần chứng minh mẫu của (2) \(\le\left(a^2+b^2+c^2\right)^2\)
... Tự biến đổi ra thôi thi ta được 1 biểu thức không âm luôn đúng
=> BĐT trên đúng
=> đpcm
Dấu "=" xảy ra khi: a = b = c
Cho \(M=\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{a^2+c^2-b^2}{2ac}\)
Chứng minh rằng:
a. Nếu a, b, c là cạnh tam giác thì M > 1
b. Nếu M = 1 thì 2 trong 3 phân thức = 1 và 1 phân thức còn lại = -1
Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì:
a2 + b2 + c2 - 2ab - 2bc - 2ac<0
Vì a,b,c là độ dài ba cạnh tam giác
\(\Rightarrow a^2=a.a< a\left(b+c\right)=ab+ac\)
TT\(\Rightarrow b^2< ba+bc;c^2< cb+ca\)
Cộng vế theo vế:
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Hay \(a^2+b^2+c^2-2ab-2bc-2ca< 0\left(\text{đ}pcm\right)\)